Lithium and lithium ion batteries for applications in microelectronic devices: A review

Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

[1]  John A Rogers,et al.  Imprintable, Bendable, and Shape‐Conformable Polymer Electrolytes for Versatile‐Shaped Lithium‐Ion Batteries , 2013, Advanced materials.

[2]  Ji‐Guang Zhang,et al.  Tunable electrochemical properties of fluorinated graphene , 2013 .

[3]  J. Pikul,et al.  High power primary lithium ion microbatteries , 2013 .

[4]  Fred Roozeboom,et al.  3‐D Integrated All‐Solid‐State Rechargeable Batteries , 2007 .

[5]  P. Bruce,et al.  Ionic conductivity in crystalline polymer electrolytes , 2001, Nature.

[6]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[7]  J. Sanz,et al.  Three-Dimensionally Ordered Macroporous Lithium Manganese Oxide for Rechargeable Lithium Batteries , 2008 .

[8]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[9]  Christopher S. Johnson,et al.  Stabilized alpha-MnO2 electrodes for rechargeable 3 V lithium batteries , 1997 .

[10]  H. F. Hunger,et al.  Rate Capability and Electrochemical Stability of Carbon Fluorine Compounds in Organic Electrolytes , 1975 .

[11]  O. Johnson One-Dimensional Diffusion of Li in Rutile , 1964 .

[12]  P. Bruce,et al.  Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[13]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[14]  M. Barak,et al.  Power Sources 4 , 1974 .

[15]  Q. Lai,et al.  Synthesis by citric acid sol–gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery , 2005 .

[16]  W. Rüdorff,et al.  Zur Konstitution des Kohlenstoff-Monofluorids , 1947 .

[17]  J. C. Nardi Characterization of the Li / MnO2 Multistep Discharge , 1985 .

[18]  S. Dou,et al.  Paper-like free-standing polypyrrole and polypyrrole-liFePO4 composite films for flexible and bendable rechargeable battery , 2008 .

[19]  Seung-won Lee,et al.  Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery , 2004 .

[20]  M. Roberts,et al.  Conformal electrodeposition of manganese dioxide onto reticulated vitreous carbon for 3D microbattery applications , 2011 .

[21]  T. Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell II . X‐Ray Diffractional and Electrochemical Characterization on Deep Discharge Products of Electrolytic Manganese Dioxide , 1990 .

[22]  Alexander Eychmüller,et al.  A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life , 2013, Advanced materials.

[23]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[24]  M. Onoda,et al.  Crystal structure and electronic properties of the Ag2V4O11 insertion electrode , 2001 .

[25]  P. Wiseman,et al.  Cobalt(III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction , 1984 .

[26]  K. Striebel,et al.  Electrochemical Behavior of LiMn2 O 4 and LiCoO2 Thin Films Produced with Pulsed Laser Deposition , 1996 .

[27]  R. Kohler,et al.  Laser-Printed and Processed LiCoO 2 CathodeThick Films for Li-Ion Microbatteries , 2012 .

[28]  Doron Aurbach,et al.  On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives , 2002 .

[29]  W. David,et al.  Alpha manganese dioxide for lithium batteries: A structural and electrochemical study , 1992 .

[30]  R. Yazami,et al.  Low-temperature carbon fluoride for high power density lithium primary batteries , 1997 .

[31]  T. Umegaki,et al.  LiCoO2 and LiMn2 O 4 Thin-Film Electrodes for Rechargeable Lithium Batteries Preparation Using PVP Sol-Gel to Produce Excellent Electrochemical Properties , 2003 .

[32]  Jihan Kim,et al.  Fabrication of LiMn2O4 thin films by sol–gel method for cathode materials of microbattery , 1998 .

[33]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[34]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[35]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[36]  Phil Johns,et al.  In situ growth of polymer electrolytes on lithium ion electrode surfaces , 2009 .

[37]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[38]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[39]  J. Tarascon,et al.  Synthesis and Electrochemical Study of New Copper Vanadium Bronzes and of Two New V 2 O 5 Polymorphs: β′‐ and ε ′ ‐ V 2 O 5 , 1992 .

[40]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[41]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[42]  A. D. Kock,et al.  Synthesis and characterization of γ-MnO2 from LiMn2O4 , 1989 .

[43]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[44]  B. Hwang,et al.  Structure, Morphology, and Electrochemical Investigation of LiMn2O4 Thin Film Cathodes Deposited by Radio Frequency Sputtering for Lithium Microbatteries , 2009 .

[45]  K. Seki,et al.  Fluorination of fullerene C60 and electrochemical properties of C60Fx , 1995 .

[46]  J. Tarascon,et al.  Lithium intercalation in Ag2V4O11 , 1994 .

[47]  W. Weppner,et al.  Li9SiAlO8: A Lithium Ion Electrolyte for Voltages above 5.4 V , 1996 .

[48]  T. Mallouk,et al.  Reversible intercalation of graphite by fluorine: a new bifluoride, C12HF2, and graphite fluorides, CxF (5 > x > 2) , 1983 .

[49]  M. R. Suchanski AC Impedance of the Carbon Monofluoride Electrode , 1985 .

[50]  J. Galy,et al.  β AgVO3Crystal Structure and Relationships with Ag2V4O11and δ AgxV2O5 , 1996 .

[51]  W. Yoon,et al.  Characteristics of a Li/MnO2 battery using a lithium powder anode at high-rate discharge , 2003 .

[52]  N. Munichandraiah,et al.  Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor , 2009 .

[53]  Chang-Jin Kim,et al.  Fabrication of High-Aspect-Ratio Electrode Arrays for Three-Dimensional Microbatteries , 2007, Journal of Microelectromechanical Systems.

[54]  K. Amine,et al.  Preparation and electrochemical properties of Li4Ti5O12 thin film electrodes by pulsed laser deposition , 2009 .

[55]  Thomas F. Marinis,et al.  Ultrahigh‐Energy‐Density Microbatteries Enabled by New Electrode Architecture and Micropackaging Design , 2010, Advanced materials.

[56]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[57]  Esther S. Takeuchi,et al.  Dual-chemistry cathode system for high-rate pulse applications , 2005 .

[58]  Andrew G. Glen,et al.  APPL , 2001 .

[59]  K. D. Wadsworth,et al.  Structure of Carbon Monofluoride , 1948, Nature.

[60]  M. Mastragostino,et al.  Power and temperature controlled microwave synthesis of SVO , 2007 .

[61]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[62]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[63]  G. Pistoia Some Restatements on the Nature and Behavior of MnO2 for Li Batteries , 1982 .

[64]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[65]  Seung-Man Yang,et al.  Optofluidic Assembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, and Structures , 2008 .

[66]  J. Pereira‐Ramos,et al.  Electrochemical Properties of Low Temperature Crystallized LiCoO2 , 1997 .

[67]  Gene R. Ploskey,et al.  The Juvenile Salmon Acoustic Telemetry System: A New Tool , 2010 .

[68]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[69]  J. Tarascon,et al.  Fabrication of thin-film LiMn2O4 cathodes for rechargeable microbatteries , 1991 .

[70]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[71]  K. Edström,et al.  3D lithium ion batteries{from fundamentals to fabrication , 2011 .

[72]  M. Dubois,et al.  Electrochemical performance of low temperature fluorinated graphites used as cathode in primary lithium batteries , 2006 .

[73]  Byungwoo Park,et al.  Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell , 2000 .

[74]  J. Goodenough,et al.  AC impedance of the Li(1−x)CoO2 electrode , 1986 .

[75]  Jun Chen,et al.  Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. , 2006, Inorganic chemistry.

[76]  Nancy J. Dudney,et al.  Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries , 1992 .

[77]  Christopher Blauth,et al.  Data, data, data… , 2007, International journal of clinical practice.

[78]  G. Kearley,et al.  The life and times of lithium in anatase TiO2 , 2004 .

[79]  J. Tarascon,et al.  Room-temperature synthesis leading to nanocrystalline Ag(2)V(4)O(11). , 2010, Journal of the American Chemical Society.

[80]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .

[81]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[82]  M. Yoshio,et al.  Optimization of Spinel Li1 + x Mn2 − y O 4 as a 4 V Li‐Cell Cathode in Terms of a Li‐Mn‐O Phase Diagram , 1997 .

[83]  K. Zaghib,et al.  SnO2–MnO2 composite powders and their electrochemical properties , 2012 .

[84]  Heon-Cheol Shin,et al.  Cable‐Type Flexible Lithium Ion Battery Based on Hollow Multi‐Helix Electrodes , 2012, Advanced materials.

[85]  Ermete Antolini,et al.  LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties , 2004 .

[86]  Yongyao Xia,et al.  Application of ultrasonic irradiation to the sol-gel synthesis of silver vanadium oxides. , 2005, Ultrasonics sonochemistry.

[87]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[88]  Esther S Takeuchi,et al.  Batteries used to Power Implantable Biomedical Devices. , 2012, Electrochimica acta.

[89]  Sehee Lee,et al.  ALL-SOLID-STATE LITHIUM THIN-FILM RECHARGEABLE BATTERY WITH LITHIUM MANGANESE OXIDE , 1999 .

[90]  Jeffrey W. Long,et al.  Charge insertion into hybrid nanoarchitectures: mesoporous manganese oxide coated with ultrathin poly(phenylene oxide) , 2004 .

[91]  J. Read,et al.  LiF Formation and Cathode Swelling in the Li/CFx Battery , 2011 .

[92]  T. Ohzuku,et al.  Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells , 1985 .

[93]  Sehee Lee,et al.  Characterization of sputter-deposited LiMn[sub 2]O[sub 4] thin films for rechargeable microbatteries , 1994 .

[94]  Chris A Mack,et al.  Fifty Years of Moore's Law , 2011, IEEE Transactions on Semiconductor Manufacturing.

[95]  Esther S. Takeuchi,et al.  The Reduction of Silver Vanadium Oxide in Lithium/Silver Vanadium Oxide Cells , 1988 .

[96]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[97]  Hui Zhan,et al.  Synthesis of Ag2V4O11 as a cathode material for lithium battery via a rheological phase method , 2006 .

[98]  S. Ramakrishna,et al.  Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced via electrospinning technique , 2013 .

[99]  Chunlei Wang,et al.  Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery , 2008 .

[100]  B. Popov,et al.  Discharge characteristics of silver vanadium oxide cathodes , 2006 .

[101]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[102]  K. West,et al.  Lithium insertion into silver vanadium oxide, Ag2V4O11 , 1995 .

[103]  G. Bergman,et al.  Heat dissipation from lithium/silver vanadium oxide cells during storage and low-rate discharge , 1987 .

[104]  H. Zandbergen,et al.  Two Structures of Ag2-xV4O11, Determined by High Resolution Electron Microscopy , 1994 .

[105]  J. Tarascon,et al.  Low Temperature LiMn2 O 4 Spinel Films for Secondary Lithium Batteries , 1992 .

[106]  Glenn G. Amatucci,et al.  Optimization of Insertion Compounds Such as LiMn2 O 4 for Li-Ion Batteries , 2002 .

[107]  E. Takeuchi,et al.  Solid-State Characterization of Reduced Silver Vanadium-Oxide from the Li/Svo Discharge Reaction , 1994 .

[108]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[109]  T. Matsue,et al.  Electrochemical Studies of Spinel LiMn_2O_4 Films Prepared by Electrostatic Spray Deposition , 1998 .

[110]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[111]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[112]  S. W. Leeuw,et al.  Diffusion of Li-ions in rutile. An ab initio study , 2003 .

[113]  Yvonne Freeh,et al.  Handbook Of Batteries , 2016 .

[114]  N. Watanabe Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries , 1980 .

[115]  R. Kostecki,et al.  Fabrication of Interdigitated Carbon Structures by Laser Pyrolysis of Photoresist , 2002 .

[116]  E. Takeuchi,et al.  Solid-state cathode materials for lithium batteries: Effect of synthesis temperature on the physical and electrochemical properties of silver vanadium oxide , 1993 .

[117]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[118]  A. D. Kock,et al.  The versatility of MnO2 for lithium battery applications , 1993 .

[119]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[120]  Jun Liu,et al.  Addressing the Grand Challenges in Energy Storage , 2013 .

[121]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[122]  Hong-li Wang,et al.  Synthesis and characterization of spinel Li4Ti5O12 anode material by oxalic acid-assisted sol–gel method , 2006 .

[123]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[124]  P. Bruce,et al.  Increasing the conductivity of crystalline polymer electrolytes , 2005, Nature.

[125]  Y. Shao-horn,et al.  Structural Characterization of Heat‐treated Electrolytic Manganese Dioxide and Topotactic Transformation of Discharge Products in the Li ‐ MnO2 Cells , 1997 .

[126]  P. Notten,et al.  Low-Pressure Chemical Vapor Deposition of LiCoO2 Thin Films: A Systematic Investigation of the Deposition Parameters , 2009 .

[127]  Keon Jae Lee,et al.  Bendable inorganic thin-film battery for fully flexible electronic systems. , 2012, Nano letters.

[128]  R. Yazami,et al.  Hybrid-type graphite fluoride as cathode material in primary lithium batteries , 2004 .

[129]  Linda F. Nazar,et al.  The true crystal structure of Li17M4 (M=Ge, Sn, Pb)-revised from Li22M5 , 2001 .

[130]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[131]  Jeffrey W. Fergus,et al.  Ceramic and polymeric solid electrolytes for lithium-ion batteries , 2010 .

[132]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[133]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[134]  N. Baffier,et al.  Synthesis of vanadium bronzes MxV2O5 through sol-gel processes I - Monoclinic bronzes (M = Na, Ag) , 1989 .

[135]  Lili Liu,et al.  LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. , 2013, Nano letters.

[136]  E. Takeuchi,et al.  Lithium/silver vanadium oxide batteries with various silver to vanadium ratios , 1987 .

[137]  N. Imanishi,et al.  Preparation and 7Li-NMR study of chemically delithiated Li1−xCoO2 (0 , 1999 .

[138]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[139]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[140]  K. Takeuchi Silver vanadium oxides and related battery applications , 2001 .

[141]  Kyoo-Seung Han,et al.  Effect of 20°–200oC Fabrication Temperature on Microstructure of Hydrothermally Prepared LiCoO2 Films , 2004 .

[142]  Y. Fujii,et al.  On the Structure of Graphite Fluoride , 1987 .

[143]  Tetsuro Kobayashi,et al.  Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte , 2012 .

[144]  Dong-Hwa Seo,et al.  Flexible energy storage devices based on graphene paper , 2011 .

[145]  P. Bruce,et al.  Ionic conductivity of LISICON solid solutions, Li2+2xZn1−xGeO4 , 1982 .

[146]  J. B. Fernandes,et al.  Manganese dioxide — a review of a battery chemical part I. Chemical syntheses and x-ray diffraction studies of manganese dioxides , 1985 .

[147]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[148]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[149]  Tomoyuki Yasukawa,et al.  All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure , 2007 .

[150]  F. Kang,et al.  Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors , 2012 .

[151]  M. Dubois,et al.  NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere , 2004 .

[152]  R. Yazami,et al.  Physical characteristics and rate performance of (CFx)n (0.33 < x < 0.66) in lithium batteries , 2006 .

[153]  F. Hsu,et al.  Preparation and Characterization of Thin Film Li4Ti5O12 Electrodes by Magnetron Sputtering , 2005 .

[154]  E. Cairns,et al.  Direct Electroplating of Lithium Cobalt Oxide Film on Platinum Substrate in 100°–200°C Aqueous Solution , 2002 .

[155]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[156]  Jae‐Hun Kim,et al.  Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries , 2008 .

[157]  Keun-Ho Choi,et al.  A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries , 2014 .

[158]  T. J. Carlson,et al.  An injectable acoustic transmitter for juvenile salmon , 2015, Scientific Reports.

[159]  M. Dubois,et al.  Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides , 2006 .

[160]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[161]  Feng Li,et al.  Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates , 2012, Proceedings of the National Academy of Sciences.

[162]  J. D. Robertson,et al.  Electrical properties of amorphous lithium electrolyte thin films , 1992 .

[163]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[164]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[165]  R. Yazami A new graphite fluoride compound as electrode material for lithium intercalation in solid state cells , 1988 .

[166]  C. Wan,et al.  Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte , 1998 .

[167]  Jeffrey Read,et al.  Carbothermal treatment for the improved discharge performance of primary Li/CFx battery , 2009 .

[168]  Charles R. Martin,et al.  A general template-based method for the preparation of nanomaterials , 1997 .

[169]  M. Endo,et al.  Preparation and electrical conductivity of fluorine-graphite fiber intercalation compound , 1986 .

[170]  Emmanuel Haro-Poniatowski,et al.  Growth of LiMn2O4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries , 2000 .

[171]  Jian Xie,et al.  Orientation dependence of Li-ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering , 2008 .

[172]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[173]  Nancy J. Dudney,et al.  Preferred Orientation of Polycrystalline LiCoO2 Films , 2000 .

[174]  Shengbo Zhang,et al.  Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell , 2009 .

[175]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[176]  Xiaogang Zhang,et al.  Preparation and characterization of nanocrystalline Li4Ti5O12 by sol–gel method , 2003 .

[177]  Tsutomu Ohzuku,et al.  Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell , 1990 .

[178]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[179]  T. Nakajima,et al.  Electrochemical properties of fluorinated fullerene C60 , 1996 .

[180]  Hui Zhan,et al.  Facile preparation of Ag2V4O11 nanoparticles via low-temperature molten salt synthesis method , 2008 .

[181]  S. Bonnamy,et al.  Fluorination of carbon nanotubes , 1997 .

[182]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[183]  Craig L. Schmidt,et al.  Hybrid cathode lithium batteries for implantable medical applications , 2006 .

[184]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[185]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[186]  M. Broussely,et al.  Chemical lithium extraction from manganese oxides for lithium rechargeable batteries , 1991 .

[187]  P. Fulvio,et al.  Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery , 2011 .

[188]  R. Yazami,et al.  Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries , 2007 .

[189]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[190]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[191]  Michael M. Thackeray,et al.  Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C , 1992 .

[192]  Afshin Pendashteh,et al.  Synthesis of micro and nanostructured MnO2 and their comparative study in lithium battery , 2012, Journal of the Iranian Chemical Society.

[193]  Y. Fujii,et al.  Chemical composition and crystal structure of graphite fluoride , 1979 .

[194]  M. Broussely,et al.  A high performance LixMnOy cathode material for rechargeable lithium cells , 1993 .

[195]  I. Asanov,et al.  X‐Ray Photoelectron‐ and Auger‐Spectroscopic Study of Superstoichiometric Fluorographite‐Like Materials , 2002 .

[196]  F. Coowar,et al.  The Li1+xMn2O4C system Materials and electrochemical aspects , 1995 .

[197]  M. Skorobogatiy,et al.  Flexible, Solid Electrolyte-Based Lithium Battery Composed of LiFePO4 Cathode and Li4Ti5O12 Anode for Applications in Smart Textiles , 2011, 1106.4185.

[198]  P. M. D. Wolff Interpretation of some γ‐MnO2 diffraction patterns , 1959 .

[199]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[200]  B. Scrosati,et al.  Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries , 2006 .

[201]  E. Wenda Phase diagram of V2O5-MoO3-Ag2O , 1985 .

[202]  A. D. Kock,et al.  Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications , 1992 .