Accuracy of fragmentation in ab initio calculations of hydrated sodium cation

We discuss the accuracy of fragmentation in fragment molecular orbital (FMO) calculations for the hydrated sodium ion. Two-body expansion shows a considerable error in total energy even if water molecules in the second hydration shell are included in the same fragment as the sodium ion. Inclusion of the three-body term significantly improves both the total energy and the charge distributions. We also illustrate the dependence of the net charge of sodium ion on solvent size and the interfacial property of water molecules. The present study will thus provide fundamental information about hydrated ion to facilitate further theoretical and experimental studies.

[1]  Kazuya Ishimura,et al.  Accuracy of the three‐body fragment molecular orbital method applied to Møller–Plesset perturbation theory , 2007, J. Comput. Chem..

[2]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on large scale systems containing heavy metal atom , 2006 .

[3]  Takeshi Ishikawa,et al.  Fragment Molecular Orbital method‐based Molecular Dynamics (FMO‐MD) as a simulator for chemical reactions in explicit solvation , 2009, J. Comput. Chem..

[4]  M. Aida,et al.  An Ab Initio MO Study on Orbital Interaction and Charge Distribution in Alkali Metal Aqueous Solution: Li+, Na+, and K+ , 2004 .

[5]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[6]  Jay W. Ponder,et al.  Accurate modeling of the intramolecular electrostatic energy of proteins , 1995, J. Comput. Chem..

[7]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[8]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[9]  Takeshi Ishikawa,et al.  A fully quantum mechanical simulation study on the lowest n-π* state of hydrated formaldehyde , 2007 .

[10]  Arshad Khan Theoretical studies of Na(H2O)19-21+ and K(H2O)19-21+ clusters: Explaining the absence of magic peak for Na(H2O)20+ , 2004 .

[11]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[12]  Yutaka Akiyama,et al.  Fragment molecular orbital method: application to polypeptides , 2000 .

[13]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[14]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[15]  Mark S. Gordon,et al.  The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry , 2001 .

[16]  K. Morokuma,et al.  Ab Initio Molecular Orbital Study of Na(H2O)n (n = 1-6) Clusters and Their Ions. Comparison of Electronic Structure of the "Surface" and "Interior" Complexes , 1994 .

[17]  H. Ohtaki,et al.  Structure and dynamics of hydrated ions , 1993 .

[18]  Haibo Yu,et al.  Accounting for polarization in molecular simulation , 2005, Comput. Phys. Commun..

[19]  Takeshi Ishikawa,et al.  How does an S(N)2 reaction take place in solution? Full ab initio MD simulations for the hydrolysis of the methyl diazonium ion. , 2008, Journal of the American Chemical Society.

[20]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[21]  Shigenori Tanaka,et al.  Modern methods for theoretical physical chemistry of biopolymers , 2006 .

[22]  K. Sharp,et al.  Protein-solvent interactions. , 2006, Chemical reviews.

[23]  M. Aida,et al.  A polarizable mixed Hamiltonian model of electronic structure for micro-solvated excited states. I. Energy and gradients formulation and application to formaldehyde (1A2) , 2002 .

[24]  William L. Jorgensen,et al.  OPLS ALL-ATOM MODEL FOR AMINES : RESOLUTION OF THE AMINE HYDRATION PROBLEM , 1999 .

[25]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[26]  Mikko Karttunen,et al.  Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties , 2004, J. Comput. Chem..

[27]  B. Pettitt,et al.  Solvation and hydration of proteins and nucleic acids: a theoretical view of simulation and experiment. , 2002, Accounts of chemical research.

[28]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[29]  Yuto Komeiji,et al.  Change in a protein's electronic structure induced by an explicit solvent: An ab initio fragment molecular orbital study of ubiquitin , 2007, J. Comput. Chem..

[30]  Masami Uebayasi,et al.  Pair interaction molecular orbital method: an approximate computational method for molecular interactions , 1999 .

[31]  Kazuo Kitaura,et al.  Cluster hydration model for binding energy calculations of protein-ligand complexes. , 2009, The journal of physical chemistry. B.

[32]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[33]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[34]  S. Varma,et al.  Coordination numbers of alkali metal ions in aqueous solutions. , 2006, Biophysical chemistry.

[35]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[36]  Yuichi Inadomi,et al.  PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules. , 2004, Computational biology and chemistry.