An Integral Inequality for Convex Functions, with Application to Teletraffic Congestion Problems
暂无分享,去创建一个
[1] W. Whitt. On approximations for queues, I: Extremal distributions , 1984, AT&T Bell Laboratories Technical Journal.
[2] A. Kuczura,et al. Queues with mixed renewal and poisson inputs , 1972 .
[3] A. E. Eckberg,et al. Sharp Bounds on Laplace-Stieltjes Transforms, with Applications to Various Queueing Problems , 1977, Math. Oper. Res..
[4] Peter G. Taylor,et al. Bounds on the Sensitivity of Generalised Semi-Markov Processes with a Single Generally Distributed Lifetime , 1992, Math. Oper. Res..
[5] J. M. Holtzman. B.S.T.J. brief: The accuracy of the equivalent random method with renewal inputs , 1973 .
[6] Tibère Popoviciu,et al. Les fonctions convexes , 1944 .
[7] W. Whitt. On approximations for queues, III: Mixtures of exponential distributions , 1984, AT&T Bell Laboratories Technical Journal.
[8] Faiz A. Al-Khayyal,et al. On Approximating and Bounding GI/M/c Queues -- A Summary, , 1975 .
[9] A. Kuczura. Loss Systems with Mixed Renewal and Poisson Inputs , 1973, Oper. Res..
[10] W. Whitt,et al. On approximations for queues, II: Shape constraints , 1984, AT&T Bell Laboratories Technical Journal.
[11] Peter Bullen,et al. A CRITERION FOR n-CONVEXITY , 1971 .
[12] K. Kvols,et al. Bounds and approximations for the periodic on/off queue with applications to ATM traffic control , 1992, [Proceedings] IEEE INFOCOM '92: The Conference on Computer Communications.
[13] T. Rolski. Some inequalities for GI/M/n queues , 1972 .