Optimal stopping with dynamic variational preferences

We solve optimal stopping problems in uncertain environments for agents assessing utility by virtue of dynamic variational preferences as in Maccheroni, Marinacci and Rustichini (2006) [16] or, equivalently, assessing risk in terms of dynamic convex risk measures as in Cheridito, Delbaen and Kupper (2006) [4]. The solution is achieved by generalizing the approach in Riedel (2009) [21] introducing the concept of variational supermartingales and variational Snell envelopes with an accompanying theory. To illustrate results, we consider prominent examples: dynamic multiplier preferences and a dynamic version of generalized average value at risk introduced in Cheridito and Tianhui (2009) [5].

[1]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[2]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[3]  Massimo Marinacci,et al.  Dynamic variational preferences , 2006, J. Econ. Theory.

[4]  H. Föllmer,et al.  Convex risk measures and the dynamics of their penalty functions , 2006 .

[5]  Emanuela Rosazza Gianin,et al.  Risk measures via g-expectations , 2006 .

[6]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[7]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[8]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[9]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[10]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[11]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[12]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[13]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[14]  Massimo Marinacci,et al.  Mutual absolute continuity of multiple priors , 2007, J. Econ. Theory.

[15]  H. Föllmer,et al.  Robust Preferences and Robust Portfolio Choice , 2009 .

[16]  F. Riedel Optimal Stopping With Multiple Priors , 2009 .

[17]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[18]  David M. Kreps A REPRESENTATION THEOREM FOR "PREFERENCE FOR FLEXIBILITY" , 1979 .

[19]  Patrick Cheridito,et al.  RISK MEASURES ON ORLICZ HEARTS , 2009 .

[20]  Patrick Cheridito,et al.  Time-Inconsistency of VaR and Time-Consistent Alternatives , 2007 .

[21]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[22]  Jocelyne Bion-Nadal,et al.  Dynamic risk measures: Time consistency and risk measures from BMO martingales , 2008, Finance Stochastics.

[23]  Alexander Schied,et al.  Optimal investments for risk- and ambiguity-averse preferences: a duality approach , 2006, Finance Stochastics.