Computation strategies of orthogonal image moments: A comparative study

This paper discusses possible computation schemes that have been introduced in the past and cope with the efficient computation of the orthogonal image moments. An exhaustive comparative study of these alternatives is performed in order to investigate the conditions under which each scheme ensures high computation rates, for several test images. The present study aims to discover the properties and the behaviour of the different methodologies and it serves as a reference point in the field of moment's computation. Some useful conclusions are drawn regarding the applicability and the usefulness of the computation strategies in comparison and efficient hybrid methods are proposed to better utilize their advantages.

[1]  George A. Papakostas,et al.  Novel moment invariants for improved classification performance in computer vision applications , 2010, Pattern Recognit..

[2]  Huazhong Shu,et al.  Image analysis by discrete orthogonal Racah moments , 2007, Signal Process..

[3]  Huazhong Shu,et al.  Translation and scale invariants of Tchebichef moments , 2007, Pattern Recognit..

[4]  Xiaofeng Wang,et al.  Classification of plant leaf images with complicated background , 2008, Appl. Math. Comput..

[5]  Yiannis S. Boutalis,et al.  Numerical error analysis in Zernike moments computation , 2006, Image Vis. Comput..

[6]  R. Mukundan,et al.  A Fast 4 $\times$ 4 Forward Discrete Tchebichef Transform Algorithm , 2007, IEEE Signal Processing Letters.

[7]  Mircea Nicolescu,et al.  Accurate and Efficient Computation of High Order Zernike Moments , 2005, ISVC.

[8]  Huazhong Shu,et al.  Efficient Legendre moment computation for grey level images , 2014, Pattern Recognit..

[9]  Dimitris A. Karras,et al.  Image coding using a wavelet based Zernike moments compression technique , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[10]  Raveendran Paramesran,et al.  Image analysis by Krawtchouk moments , 2003, IEEE Trans. Image Process..

[11]  Dimitris E. Koulouriotis,et al.  A unified methodology for the efficient computation of discrete orthogonal image moments , 2009, Inf. Sci..

[12]  Yiannis S. Boutalis,et al.  Numerical stability of fast computation algorithms of Zernike moments , 2008, Appl. Math. Comput..

[13]  Xiangyang Wang,et al.  A robust image watermarking algorithm using SVR detection , 2009, Expert Syst. Appl..

[14]  Basil G. Mertzios,et al.  An Efficient Feature Extraction Methodology for Computer Vision Applications using Wavelet Compressed Zernike Moments , 2005 .

[15]  Dong-Gyu Sim,et al.  Invariant texture retrieval using modified Zernike moments , 2004, Image Vis. Comput..

[16]  Hock-Ann Goh,et al.  Translation and Scale Invariants of Hahn Moments , 2009, Int. J. Image Graph..

[17]  Yiannis S. Boutalis,et al.  Pattern classification by using improved wavelet Compressed Zernike Moments , 2009, Appl. Math. Comput..

[18]  Huazhong Shu,et al.  Image analysis by discrete orthogonal dual Hahn moments , 2007, Pattern Recognit. Lett..

[19]  Chee-Way Chong,et al.  Translation and scale invariants of Legendre moments , 2004, Pattern Recognit..

[20]  Alvaro R. De Pierro,et al.  Analysis for the reconstruction of a noisy signal based on orthogonal moments , 2002, Appl. Math. Comput..

[21]  Raveendran Paramesran,et al.  On the computational aspects of Zernike moments , 2007, Image Vis. Comput..

[22]  Raveendran Paramesran,et al.  Efficient computation of radial moment functions using symmetrical property , 2006, Pattern Recognit..

[23]  Huazhong Shu,et al.  Image reconstruction from limited range projections using orthogonal moments , 2007, Pattern Recognit..

[24]  Bartek Rajwa,et al.  A numerical recipe for accurate image reconstruction from discrete orthogonal moments , 2007, Pattern Recognit..

[25]  Eric C. Kintner A Recurrence Relation for Calculating the Zernike Polynomials , 1976 .

[26]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[27]  M. Zhenjiang Zernike moment-based image shape analysis and its application , 2000 .

[28]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[29]  Raveendran Paramesran,et al.  An efficient method for the computation of Legendre moments , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  A. Prata,et al.  Algorithm for computation of Zernike polynomials expansion coefficients. , 1989, Applied optics.

[31]  Huazhong Shu,et al.  Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments , 2010, Pattern Recognit..

[32]  Dimitris E. Koulouriotis,et al.  Exact and Speedy Computation of Legendre Moments on Binary Images , 2007, Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '07).

[33]  K. R. Ramakrishnan,et al.  Fast computation of Legendre and Zernike moments , 1995, Pattern Recognit..

[34]  Basil G. Mertzios,et al.  Fast numerically stable computation of orthogonal Fourier--Mellin moments , 2007 .

[35]  Miroslaw Pawlak,et al.  Accurate Computation of Zernike Moments in Polar Coordinates , 2007, IEEE Transactions on Image Processing.

[36]  Chee-Way Chong,et al.  Translation invariants of Zernike moments , 2003, Pattern Recognit..

[37]  Dimitris A. Karras,et al.  A new class of Zernike moments for computer vision applications , 2007, Inf. Sci..

[38]  Karim Faez,et al.  GA-based optimal selection of PZMI features for face recognition , 2008, Appl. Math. Comput..

[39]  Kar-Seng Loke,et al.  Image reconstruction using various discrete orthogonal polynomials in comparison with DCT , 2007, Appl. Math. Comput..

[40]  M. Teague Image analysis via the general theory of moments , 1980 .

[41]  Engin Avci,et al.  A robust technique based on invariant moments - ANFIS for recognition of human parasite eggs in microscopic images , 2008, Expert Syst. Appl..

[42]  Huazhong Shu,et al.  Two new algorithms for efficient computation of Legendre moments , 2002, Pattern Recognit..

[43]  Xuelong Li,et al.  A local Tchebichef moments-based robust image watermarking , 2009, Signal Process..

[44]  G.A. Papakostas,et al.  On accelerating the computation of 2-D Discrete Cosine Transform in image processing , 2008, 2008 International Conference on Signals and Electronic Systems.

[45]  Raveendran Paramesran,et al.  New computational methods for full and subset Zernike moments , 2004, Inf. Sci..

[46]  Khalid M. Hosny,et al.  Exact and fast computation of geometric moments for gray level images , 2007, Appl. Math. Comput..

[47]  Dimitris E. Koulouriotis,et al.  Efficient and accurate computation of geometric moments on gray-scale images , 2008, Pattern Recognit..

[48]  Chee-Way Chong,et al.  A comparative analysis of algorithms for fast computation of Zernike moments , 2003, Pattern Recognit..

[49]  Dimitris E. Koulouriotis,et al.  Accurate and speedy computation of image Legendre moments for computer vision applications , 2010, Image Vis. Comput..

[50]  Huazhong Shu,et al.  A new fast method for computing Legendre moments , 2000, Pattern Recognit..

[51]  Wei Guan,et al.  Aircraft recognition in infrared image using wavelet moment invariants , 2009, Image Vis. Comput..

[52]  Peng Jia-xiong,et al.  Invariance analysis of improved Zernike moments , 2002 .

[53]  R. Mukundan,et al.  Some computational aspects of discrete orthonormal moments , 2004, IEEE Transactions on Image Processing.

[54]  Huazhong Shu,et al.  A novel algorithm for fast computation of Zernike moments , 2002, Pattern Recognit..

[55]  George A. Papakostas,et al.  Efficient 2-D DCT Computation from an Image Representation Point of View , 2009 .

[56]  Majid Ahmadi,et al.  Efficient algorithm for fast computation of Zernike moments , 1996 .

[57]  Cheng Wang,et al.  Image analysis by modified Legendre moments , 2007, Pattern Recognit..

[58]  Eric C. Kintner,et al.  On the Mathematical Properties of the Zernike Polynomials , 1976 .

[59]  Chee-Way Chong,et al.  The scale invariants of pseudo-Zernike moments , 2003, Pattern Analysis & Applications.