A NINE-NODE ASSUMED STRAIN FINITE ELEMENT FOR LARGE-DEFORMATION ANALYSIS OF LAMINATED SHELLS

An application of the element-based Lagrangian formulation is described for large-deformation analysis of both single-layered and laminated shells. Natural co-ordinate-based stresses, strains and constitutive equations are used throughout the formulation of the present shell element which offers significant implementation advantages compared with the traditional Lagrangian formulation. In order to avoid locking phenomena, an assumed strain method has been employed with judicious selection of the sampling points. Three strictly successive finite rotations are used to represent the current orientation of the shell normal. The equivalent natural constitutive equation is derived using an explicit transformation scheme to consider the multi-layer effect of laminated structures. The arc-length control method is used to trace complex load-displacement paths. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. © 1998 John Wiley & Sons, Ltd.

[1]  E. Dill,et al.  Theory of Elasticity of an Anisotropic Elastic Body , 1964 .

[2]  Hsiao Kuo-Mo,et al.  Nonlinear analysis of shell structures by degenerated isoparametric shell element , 1989 .

[3]  J. N. Reddy,et al.  Analysis of laminated composite shells using a degenerated 3‐D element , 1984 .

[4]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[5]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[6]  Rakesh K. Kapania,et al.  Geometrically Nonlinear Finite Element Analysis of Imperfect Laminated Shells , 1986 .

[7]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[8]  K. Surana A generalized geometrically nonlinear formulation with large rotations for finite elements with rotational degrees of freedoms , 1986 .

[9]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[10]  Worsak Kanok-Nukulchai,et al.  A simple and efficient finite element for general shell analysis , 1979 .

[11]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[12]  J. N. Reddy,et al.  A penalty plate‐bending element for the analysis of laminated anisotropic composite plates , 1980 .

[13]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[14]  Ahmed K. Noor,et al.  Anisotropy and shear deformation in laminated composite plates , 1976 .

[15]  Atef F. Saleeb,et al.  A hybrid/mixed model for non‐linear shell analysis and its applications to large‐rotation problems , 1990 .

[16]  Stuart F. Pawsey,et al.  Discussion of papers By O. C. Zienkiewicz, R. L. Taylor and J. M. Too and S. F. Pawsey and R. W. Clough , 1972 .

[17]  N. J. Pagano,et al.  Elastic Behavior of Multilayered Bidirectional Composites , 1972 .

[18]  Tarun Kant,et al.  Flexural analysis of laminated composites using refined higher-order C ° plate bending elements , 1988 .

[19]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[20]  Taweep Chaisomphob,et al.  AN AUTOMATIC ARC LENGTH CONTROL ALGORITHM FOR TRACING EQUILIBRIUM PATHS OF NONLINEAR STRUCTURES , 1988 .

[21]  W. Kanok-Nukulchai,et al.  Element-based lagrangian formulation for large-deformation analysis , 1988 .

[22]  K. Surana Geometrically nonlinear formulation for the curved shell elements , 1983 .

[23]  P. Pinsky,et al.  An assumed covariant strain based 9‐node shell element , 1987 .

[24]  Chung-Li Liao,et al.  Analysis of anisotropic, stiffened composite laminates using a continuum-based shell element , 1990 .

[25]  P. C. Chou,et al.  Elastic Constants of Layered Media , 1972 .

[26]  J. C. Schulz Finite element hourglassing control , 1985 .

[27]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[28]  Thomas J. R. Hughes,et al.  A LARGE DEFORMATION FORMULATION FOR SHELL ANALYSIS BY THE FINITE ELEMENT METHOD , 1981 .

[29]  K. Sawamiphakdi,et al.  Large deformation analysis of laminated shells by ftnife element method , 1981 .

[30]  P. Bergan,et al.  Solution techniques for non−linear finite element problems , 1978 .

[31]  Donald W. White,et al.  Testing of shell finite element accuracy and robustness , 1989 .

[32]  Karan S. Surana,et al.  Geometrically non-linear formulation for three dimensional curved beam elements with large rotations , 1989 .

[33]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[34]  S. W. Lee,et al.  An assumed strain finite element model for large deflection composite shells , 1989 .

[35]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[36]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[37]  Klaus-Jürgen Bathe,et al.  A geometric and material nonlinear plate and shell element , 1980 .

[38]  Hou Cheng Huang,et al.  Implementation of assumed strain degenerated shell elements , 1987 .

[39]  J. Z. Zhu,et al.  The finite element method , 1977 .

[40]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[41]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[42]  S. Lee,et al.  A solid element formulation for large deflection analysis of composite shell structures , 1988 .

[43]  S. G. Lekhnit︠s︡kiĭ Theory of elasticity of an anisotropic body , 1981 .

[44]  Ekkehard Ramm,et al.  An assessment of assumed strain methods in finite rotation shell analysis , 1989 .

[45]  Raghu Natarajan,et al.  Finite element analysis of laminated composite plates , 1979 .

[46]  B. C. Noh,et al.  New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity , 1987 .

[47]  Paul Seide,et al.  Triangular finite element for analysis of thick laminated plates , 1987 .

[48]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[49]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[50]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[51]  A. Mawenya,et al.  Finite element bending analysis of multilayer plates , 1974 .

[52]  J. Argyris An excursion into large rotations , 1982 .

[53]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[54]  J. M. Kennedy,et al.  Hourglass control in linear and nonlinear problems , 1983 .