In wireless ad hoc networks, PHY-layer interference is highly dependent on link scheduling schemes, and in turn heavily affects the performance of link scheduling. However, most existing link scheduling schemes ignore such relationship between the PHY and network layers, and hence fail to achieve the optimal end-to-end throughput due to large co-channel interference. This paper proposed a general framework for optimal TDMA (time division multiple access) link scheduling in multi-hop wireless ad hoc networks with general topology. In contrast to existing work, we maximizes the end-to-end throughput by taking into consideration the explicit relationship between the transmission rate of a link and its PHY-layer SINR (signal to interference and noise ratio). In particular, the authors formulate the scheduling problem into a LP (linear programming) problem based on the rate matrices with each entry being a function of SINR. With this formulation, the cross-layer link scheduling problem can be solved in polynomial time. To further reduce the computational complexity the authors proposed an algorithm to effectively reduce the size of the LP problem. Furthermore, to handle large-scale wireless networks, the authors present a decentralized scheduling algorithm that achieves a suboptimal TDMA scheduling solution with dramatically lower computational complexity comparing to the original LP formulation. Numerical results show that the proposed cross-layer link scheduling schemes outperform the existing schemes that assume a simplistic PHY-layer interference model by 59.45%.
[1]
Anthony Ephremides,et al.
The Architectural Organization of a Mobile Radio Network via a Distributed Algorithm
,
1981,
IEEE Trans. Commun..
[2]
Ian Holyer,et al.
The NP-Completeness of Edge-Coloring
,
1981,
SIAM J. Comput..
[3]
Murali S. Kodialam,et al.
Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem
,
2003,
MobiCom '03.
[4]
Erdal Arikan,et al.
Some complexity results about packet radio networks
,
1983,
IEEE Trans. Inf. Theory.
[5]
Theodore S. Rappaport,et al.
Wireless communications - principles and practice
,
1996
.
[6]
Leandros Tassiulas,et al.
Distributed dynamic scheduling for end-to-end rate guarantees in wireless ad hoc networks
,
2005,
MobiHoc '05.
[7]
Andrea J. Goldsmith,et al.
Capacity regions for wireless ad hoc networks
,
2002,
2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).
[8]
Leandros Tassiulas,et al.
A Distributed Scheduling Algorithm for a Bluetooth Scatternet
,
2001
.
[9]
M.J. Post,et al.
A Distributed Evolutionary Algorithm for Reorganizing Network Communications
,
1985,
MILCOM 1985 - IEEE Military Communications Conference.