Real-time classification of dance gestures from skeleton animation

We present a real-time gesture classification system for skeletal wireframe motion. Its key components include an angular representation of the skeleton designed for recognition robustness under noisy input, a cascaded correlation-based classifier for multivariate time-series data, and a distance metric based on dynamic time-warping to evaluate the difference in motion between an acquired gesture and an oracle for the matching gesture. While the first and last tools are generic in nature and could be applied to any gesture-matching scenario, the classifier is conceived based on the assumption that the input motion adheres to a known, canonical time-base: a musical beat. On a benchmark comprising 28 gesture classes, hundreds of gesture instances recorded using the XBOX Kinect platform and performed by dozens of subjects for each gesture class, our classifier has an average accuracy of 96:9%, for approximately 4-second skeletal motion recordings. This accuracy is remarkable given the input noise from the real-time depth sensor.

[1]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[2]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[3]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[4]  Jernej Barbic,et al.  Segmenting Motion Capture Data into Distinct Behaviors , 2004, Graphics Interface.

[5]  Wei Wang,et al.  A system for analyzing and indexing human-motion databases , 2005, SIGMOD '05.

[6]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[7]  Sung Yong Shin,et al.  Rhythmic-motion synthesis based on motion-beat analysis , 2003, ACM Trans. Graph..

[8]  Ramakant Nevatia,et al.  3D Human Action Recognition Using Spatio-temporal Motion Templates , 2005, ICCV-HCI.

[9]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[10]  Eugene Fiume,et al.  An efficient search algorithm for motion data using weighted PCA , 2005, SCA '05.

[11]  Demetri Terzopoulos,et al.  Signal matching through scale space , 1986, International Journal of Computer Vision.

[12]  Dimitrios Gunopulos,et al.  Indexing Large Human-Motion Databases , 2004, VLDB.

[13]  Meinard Müller,et al.  Motion templates for automatic classification and retrieval of motion capture data , 2006, SCA '06.

[14]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[15]  Jovan Popovic,et al.  Example-based control of human motion , 2004, SCA '04.

[16]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[18]  David A. Forsyth,et al.  Skeletal parameter estimation from optical motion capture data , 2004, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  C. Karen Liu,et al.  Performance-based control interface for character animation , 2009, SIGGRAPH 2009.

[20]  Clu-istos Foutsos,et al.  Fast subsequence matching in time-series databases , 1994, SIGMOD '94.

[21]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[22]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[23]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[24]  Jessica K. Hodgins,et al.  Action capture with accelerometers , 2008, SCA '08.

[25]  Christos Faloutsos,et al.  FMDistance: A Fast and Effective Distance Function for Motion Capture Data , 2008, Eurographics.

[26]  Toby Sharp,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR.

[27]  Tido Röder,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH 2005.

[28]  Aaron F. Bobick,et al.  Recognition of human body motion using phase space constraints , 1995, Proceedings of IEEE International Conference on Computer Vision.

[29]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.