A Generalized Algorithm for Inverse Simulation Applied to Helicopter Maneuvering Flight

[1]  Paolo Mantegazza,et al.  DYNAMIC RESPONSE OF MECHANICAL SYSTEMS BY A WEAK HAMILTONIAN FORMULATION , 1985 .

[2]  D. Hodges A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams , 1990 .

[3]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[4]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[5]  Parviz E. Nikravesh,et al.  Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems , 1981 .

[6]  Olivier A. Bauchau,et al.  On The Choice of Appropriate Bases for Nonlinear Dynamic Modal Analysis , 1993 .

[7]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[8]  Olivier A. Bauchau,et al.  Finite Element Based Modal Analysis of Helicopter Rotor blade , 1989 .

[9]  P. Likins,et al.  Singular Value Decomposition for Constrained Dynamical Systems , 1985 .

[10]  Satya N. Atluri,et al.  An explicit expression for the tangent-stiffness of a finitely deformed 3-D beam and its use in the analysis of space frames , 1986 .

[11]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[12]  M. Géradin,et al.  Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra , 1988 .

[13]  M. Borri,et al.  A large displacement formulation for anisotropic beam analysis , 1986 .