Computably Enumerable Sets and Quasi-Reducibility

We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, 〈RQ, ⩽Q〉, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of 〈RQ, ⩽Q〉 is undecidable.

[1]  Angus Macintyre,et al.  On algebraically closed groups , 1972 .

[2]  Rodney G. Downey The degrees of r.e. sets without the universal splitting property , 1985 .

[3]  R. Soare Recursively enumerable sets and degrees , 1987 .

[4]  A. Nies,et al.  Interpretability and Definability in the Recursively Enumerable Degrees , 1998 .

[5]  Michael Stob,et al.  Structural interactions of the recursively enumerable T- and W-degrees , 1986, Ann. Pure Appl. Log..

[6]  Paul Fischer,et al.  Some results on recursively enumerable degrees of weak reducibilities , 1986 .

[7]  Angus Macintyre,et al.  Omitting quantifier-free types in generic structures , 1972, Journal of Symbolic Logic.

[8]  Manuel Lerman Admissible ordinals and priority arguments , 1973 .

[9]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[10]  Robert I. Soare Fundamentals of Recursively Enumerable Sets and the Recursion Theorem , 1987 .

[11]  A. R. D. Mathias,et al.  Cambridge Summer School in Mathematical Logic , 1973 .

[12]  C. Jockusch Semirecursive sets and positive reducibility , 1968 .

[13]  O. V. Belegradek,et al.  Algebraically closed groups , 1974 .

[14]  Alistair H. Lachlan Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .

[15]  Martin Ziegler Ein Rekursiv Aufzählbarer btt-Grad, der Nicht Zum Wortproblem Einer Gruppe Gehört , 1976, Math. Log. Q..

[16]  W. W. Boone,et al.  Word problems II : the Oxford book , 1980 .