Origin of huge photoluminescence efficiency improvement in InGaN/GaN multiple quantum wells with low-temperature GaN cap layer grown in N2/H2 mixture gas

The nominal internal quantum efficiency of InGaN/GaN multiple quantum wells significantly increases from 5.6 to 26.8%, as a low-temperature GaN cap layer is grown in N2/H2 mixture gas. Meanwhile, the room-temperature photoluminescence (PL) peak energy shows a merely 73 meV blue shift. On the basis of temperature-dependent PL characteristics analysis, the huge improvement in PL efficiency arises mainly from the “etching effect” of hydrogen, which reduces the defect density and indium segregation at the upper well/barrier interface, and consequently contributes to the decrease in the number of nonradiative recombination centers and the enhancement of carrier localization.

[1]  Z. Deng,et al.  Investigation of temperature-dependent photoluminescence in multi-quantum wells , 2015, Scientific Reports.

[2]  L. Lauhon,et al.  Correlated high-resolution x-ray diffraction, photoluminescence, and atom probe tomography analysis of continuous and discontinuous InxGa1−xN quantum wells , 2015 .

[3]  Z. Liu,et al.  Photovoltaic response of InGaN/GaN multi-quantum well solar cells enhanced by inserting thin GaN cap layers , 2015 .

[4]  Z. Liu,et al.  Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness , 2015 .

[5]  P. Perlin,et al.  Influence of hydrogen and TMIn on indium incorporation in MOVPE growth of InGaN layers , 2014 .

[6]  Yang Jiang,et al.  Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption , 2014 .

[7]  Yang Jiang,et al.  Temperature-dependent photoluminescence in light-emitting diodes , 2014, Scientific Reports.

[8]  Jonathan J. Wierer,et al.  Controlling Indium Incorporation in InGaN Barriers with Dilute Hydrogen Flows. , 2014 .

[9]  Li Wang,et al.  Effect of Same-Temperature GaN Cap Layer on the InGaN/GaN Multiquantum Well of Green Light-Emitting Diode on Silicon Substrate , 2013, TheScientificWorldJournal.

[10]  Hui Yang,et al.  Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth , 2013 .

[11]  S. Karpov,et al.  Correlations between Epitaxy Recipe, Characteristics, and Performance of Nitride Light Emitting Diode Structures , 2013 .

[12]  A. Rosenauer,et al.  Atomic scale investigations of ultra-thin GaInN/GaN quantum wells with high indium content , 2013 .

[13]  S. Denbaars,et al.  Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells , 2012 .

[14]  Yugang Zhou,et al.  Advantages of GaN based light-emitting diodes with a p-InGaN hole reservoir layer , 2012 .

[15]  S. Dhar,et al.  Two Distinct Origins of Highly Localized Luminescent Centers within InGaN/GaN Quantum‐Well Light‐Emitting Diodes , 2011 .

[16]  Motoaki Iwaya,et al.  Misfit Strain Relaxation by Stacking Fault Generation in InGaN Quantum Wells Grown on m-Plane GaN , 2009 .

[17]  Yu-Sun Park,et al.  Direct comparison of optical characteristics of InGaN-based laser diode structures grown on pendeo epitaxial GaN and sapphire substrates , 2007 .

[18]  C. Humphreys,et al.  Role of gross well-width fluctuations in bright, green-emitting single InGaN∕GaN quantum well structures , 2007 .

[19]  Hong Chen,et al.  Effects of barrier growth temperature ramp-up time on the photoluminescence of InGaN∕GaN quantum wells , 2007 .

[20]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[21]  Eric A. Armour,et al.  Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire , 2003 .

[22]  Seong-Ju Park,et al.  Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells , 2001 .

[23]  Y. Moon,et al.  Effect of growth interruption and the introduction of H2 on the growth of InGaN/GaN multiple quantum wells , 2000 .

[24]  F. G. McIntosh,et al.  Impurity dependence on hydrogen and ammonia flow rates in InGaN bulk films , 1997 .