Probabilistic Power Flow by Monte Carlo Simulation With Latin Supercube Sampling

In this paper, a Latin supercube sampling (LSS) combined with Monte Carlo simulation is presented to efficiently sample random variables in the probabilistic power flow (PPF) problem. The results of the LSS method are compared with other techniques, namely Latin hypercube sampling (LHS) and simple random sampling (SRS), using bin-by-bin histogram comparison. The simulation results are presented for the case of IEEE 118-bus test system.

[1]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[2]  H. Mori,et al.  A New Probabilistic Load Flow Method Using MCMC in Consideration of Nodal Load Correlation , 2009, 2009 15th International Conference on Intelligent System Applications to Power Systems.

[3]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[4]  S.T. Lee,et al.  Probabilistic load flow computation using the method of combined cumulants and Gram-Charlier expansion , 2004, IEEE Transactions on Power Systems.

[5]  Bill Rosehart,et al.  Probabilistic Power Flow Considering Wind Speed Correlation of Wind Farms , 2011 .

[6]  J.H. Zhang,et al.  Probabilistic Load Flow Evaluation With Hybrid Latin Hypercube Sampling and Cholesky Decomposition , 2009, IEEE Transactions on Power Systems.

[7]  手塚 集 Uniform random numbers : theory and practice , 1995 .

[8]  Tharam S. Dillon,et al.  Stochastic power flow using cumulants and Von Mises functions , 1986 .

[9]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[10]  Wolfgang Ch. Schmid,et al.  Calculation of the Quality Parameter of Digital Nets and Application to Their Construction , 2001, J. Complex..

[11]  Ronald N. Allan,et al.  Probabilistic techniques in AC load flow analysis , 1977 .

[12]  J. Morales,et al.  Point Estimate Schemes to Solve the Probabilistic Power Flow , 2007, IEEE Transactions on Power Systems.

[13]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[14]  Yue Yuan,et al.  Probabilistic load flow computation of a power system containing wind farms using the method of combined cumulants and Gram-Charlier expansion , 2011 .

[15]  Tao Li,et al.  Cost of Reliability Analysis Based on Stochastic Unit Commitment , 2008, IEEE Transactions on Power Systems.

[16]  N. Amjady,et al.  Stochastic Multiobjective Market Clearing of Joint Energy and Reserves Auctions Ensuring Power System Security , 2009, IEEE Transactions on Power Systems.

[17]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[18]  M. Glavic,et al.  A Chance-Constrained Optimization Approach for Control of Transmission Voltages , 2012, IEEE Transactions on Power Systems.

[19]  P. Jirutitijaroen,et al.  Reliability Constrained Multi-Area Adequacy Planning Using Stochastic Programming With Sample-Average Approximations , 2008, IEEE Transactions on Power Systems.

[20]  Z. Hu,et al.  A probabilistic load flow method considering branch outages , 2006, IEEE Transactions on Power Systems.

[21]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[22]  R D Zimmerman,et al.  MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education , 2011, IEEE Transactions on Power Systems.

[23]  H. Faure Good permutations for extreme discrepancy , 1992 .

[24]  Chun-Lien Su Probabilistic load-flow computation using point estimate method , 2005, IEEE Transactions on Power Systems.

[25]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[26]  J. Usaola Probabilistic load flow in systems with wind generation , 2009 .

[27]  R.N. Allan,et al.  Evaluation Methods and Accuracy in Probabilistic Load Flow Solutions , 1981, IEEE Transactions on Power Apparatus and Systems.

[28]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[29]  W. J. Langford Statistical Methods , 1959, Nature.

[30]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[31]  R. Iman,et al.  A distribution-free approach to inducing rank correlation among input variables , 1982 .

[32]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[33]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[34]  Antonio J. Conejo,et al.  Probabilistic power flow with correlated wind sources , 2010 .

[35]  Barbara Borkowska,et al.  Probabilistic Load Flow , 1974 .

[36]  Art B. Owen,et al.  Quasi-Monte Carlo Sampling by , 2003, SIGGRAPH 2003.

[37]  J. Aguado,et al.  Cumulant-based probabilistic optimal power flow (P-OPF) with Gaussian and gamma distributions , 2005, IEEE Transactions on Power Systems.

[38]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.