Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics

Abstract Background Coronavirus disease 2019, abbreviated to COVID-19, represents an emerging health threat worldwide as, after initial reports in China, it has continued to spread rapidly. The clinical spectrum of the disease varies from mild to severe acute respiratory distress syndrome (ARDS). Moreover, many patients can be asymptomatic, thus increasing the uncertainty of the diagnostic work-up. Laboratory tests play a pivotal role in the diagnosis and management of COVID-19, the current gold standard being real-time reverse transcription polymerase chain reaction (rRT-PCR) on respiratory tract specimens. However, the diagnostic accuracy of rRT-PCR depends on many pre-analytical and analytical variables. The measurement of specific COVID-19 antibodies (both IgG and IgM) should serve as an additional, non-invasive tool for disease detection and management. Methods The imprecision of the MAGLUMI™ 2000 Plus 2019-nCov IgM and IgG assays (Snibe, Shenzhen, China) was assessed by adopting the Clinical and Laboratory Standards Institute (CLSI) EP15-A3 protocol. Linearity of dilution and recovery was evaluated by means of mixes of high-level pools and low-level pools of serum samples. Immunoglobulin time kinetics were evaluated using a series of serum samples, repeatedly collected from COVID-19-positive patients at different times, from <5 days up to 26–30 days. Results Findings at the analytical validation of the assay carried out according to the CLSI EP15-A3 guideline demonstrated that imprecision and repeatability were acceptable (repeatability was <4% and <6% for IgM and IgG, respectively, whilst intermediate imprecision was <6%). In addition, results of dilution and recovery studies were satisfactory. The kinetics of COVID-19 antibodies confirmed previously reported findings, showing a rapid increase of both IgM and IgG after 6–7 days from the symptom onset. IgG had 100% sensitivity on day 12, whilst 88% was the higher positive rate achieved for IgM after the same time interval. Conclusions The findings of this study demonstrate the validity of the MAGLUMI 2000 Plus CLIA assay for the measurement of specific IgM and IgG in sera of COVID-19 patients, and for obtaining valuable data on the kinetics of both (IgM and IgG) COVID-19 antibodies. These data represent a pre-requisite for the appropriate utilization of specific antibodies for the diagnosis and management of COVID-19 patients.

[1]  Guohong Deng,et al.  Viral Kinetics and Antibody Responses in Patients with COVID-19 , 2020, medRxiv.

[2]  T. Lancet,et al.  COVID-19: learning from experience , 2020, The Lancet.

[3]  O. Tsang,et al.  Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study , 2020, The Lancet Infectious Diseases.

[4]  G. Onder,et al.  Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. , 2020, JAMA.

[5]  G. Lippi,et al.  The critical role of laboratory medicine during coronavirus disease 2019 (COVID-19) and other viral outbreaks , 2020, Clinical chemistry and laboratory medicine.

[6]  Mario Plebani,et al.  Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19) , 2020, Clinical chemistry and laboratory medicine.

[7]  Stephen M Parodi,et al.  From Containment to Mitigation of COVID-19 in the US. , 2020, JAMA.

[8]  Hannah R. Meredith,et al.  The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application , 2020, Annals of Internal Medicine.

[9]  G. Chowell,et al.  Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[10]  Y. Teo,et al.  Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review , 2020, Journal of clinical medicine.

[11]  Lei Liu,et al.  Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections , 2020, medRxiv.

[12]  Yan Zhao,et al.  A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version) , 2020, Military Medical Research.

[13]  G. Lippi,et al.  The novel coronavirus (2019-nCoV) outbreak: think the unthinkable and be prepared to face the challenge , 2020, Diagnosis.

[14]  Wei Zhang,et al.  Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes , 2020, Emerging microbes & infections.