Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data

[1]  Juha Hyyppä,et al.  Laser Scanning in Forests , 2012, Remote. Sens..

[2]  O. Phillips,et al.  Using the U‐net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images , 2019, Remote Sensing in Ecology and Conservation.

[3]  Markus Hollaus,et al.  Early Stage Forest Windthrow Estimation Based on Unmanned Aircraft System Imagery , 2017 .

[4]  David Small,et al.  Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data , 2019, Remote. Sens..

[5]  Eija Honkavaara,et al.  Automatic Storm Damage Detection in Forests Using High-Altitude Photogrammetric Imagery , 2013, Remote. Sens..

[6]  Agata Hoscilo,et al.  Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data , 2019, Remote. Sens..

[7]  Florentin Wörgötter,et al.  Large Scale Palm Tree Detection in High Resolution Satellite Images Using U-Net , 2019, Remote. Sens..

[8]  Shihua Li,et al.  Object-Oriented Method Combined with Deep Convolutional Neural Networks for Land-Use-Type Classification of Remote Sensing Images , 2019, Journal of the Indian Society of Remote Sensing.

[9]  Miroslav Svoboda,et al.  Forest disturbances under climate change. , 2017, Nature climate change.

[10]  Gintautas Mozgeris,et al.  Rapid assessment of wind storm-caused forest damage using satellite images and stand-wise forest inventory data , 2013 .

[11]  Yun Zhang,et al.  Deep Convolutional Neural Network for Complex Wetland Classification Using Optical Remote Sensing Imagery , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Jagannath Aryal,et al.  A Statistical Framework for Near-Real Time Detection of Beetle Infestation in Pine Forests Using MODIS Data , 2014, IEEE Geoscience and Remote Sensing Letters.

[13]  Julián Tomaštík,et al.  Horizontal accuracy and applicability of smartphone GNSS positioning in forests , 2016 .

[14]  M. Friedl,et al.  Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment. , 2014, Ecological applications : a publication of the Ecological Society of America.

[15]  Dirk Tiede,et al.  Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data , 2018, Remote. Sens..

[16]  S. Magnussen,et al.  Stand-level wind damage can be assessed using diachronic photogrammetric canopy height models , 2017, Annals of Forest Science.

[17]  C. Atzberger,et al.  Windthrow Detection in European Forests with Very High-Resolution Optical Data , 2017 .

[18]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[19]  T. Gansler,et al.  Characterization of human breast biopsy specimens with near-IR Raman spectroscopy. , 1994, Analytical chemistry.

[20]  Peter T. Wolter,et al.  Landsat remote sensing of forest windfall disturbance , 2014 .

[21]  M. Schelhaas,et al.  Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy? , 2003 .

[22]  Xianjun Hao,et al.  Post-hurricane forest damage assessment using satellite remote sensing , 2010 .