A numerical solution and an exact explicit solution of the NLS equation

We consider traveling wave solutions of the nonlinear Schrodinger (NLS for short) equation. In this paper by considering the decomposition scheme, we first obtain the exact solutions of the NLS equation for the initial condition without using any classical transformations and then its numerical solutions are constructed without using any discretization technique. The numerical solutions are compared with the known analytical solutions. Its remarkable accuracy is finally demonstrated in the study of some initial values of the NLS equation.

[1]  Dogan Kaya A numerical solution of the sine-Gordon equation using the modified decomposition method , 2003, Appl. Math. Comput..

[2]  Yves Cherruault,et al.  Adomian's polynomials for nonlinear operators , 1996 .

[3]  M. J. Pujol,et al.  A new formulation of Adomian method: Convergence result , 2001 .

[4]  Z An,et al.  New Ideas for Proving Convergence of Decomposition Methods , 2003 .

[5]  Santanu Saha Ray,et al.  A numerical solution of the coupled sine-Gordon equation using the modified decomposition method , 2006, Appl. Math. Comput..

[6]  Y. Cherruault,et al.  Decomposition methods: A new proof of convergence , 1993 .

[7]  Dogan Kaya,et al.  An application of the decomposition method for second order wave equations , 2000, Int. J. Comput. Math..

[8]  Jianhong Wu,et al.  Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation , 2000, Appl. Math. Comput..

[9]  Dogan Kaya,et al.  A numerical application of the decomposition method for the combined KdV-MKdV equation , 2005, Appl. Math. Comput..

[10]  Y. Cherruault Convergence of Adomian's method , 1990 .

[11]  S. A. Khuri,et al.  A new approach to the cubic Schrödinger equation: An application of the decomposition technique , 1998, Appl. Math. Comput..

[12]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[13]  L. Debnath Nonlinear Partial Differential Equations for Scientists and Engineers , 1997 .

[14]  A. Rèpaci,et al.  Nonlinear dynamical systems: On the accuracy of adomian's decomposition method , 1990 .

[15]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[16]  Dogan Kaya,et al.  An explicit and numerical solutions of some fifth-order KdV equation by decomposition method , 2003, Appl. Math. Comput..

[17]  H. Zedan Group classification of a heterogeneous Schroedinger equation , 1995 .

[18]  Dogan Kaya,et al.  An application for a generalized KdV equation by the decomposition method , 2002 .

[19]  Salah M. El-Sayed,et al.  On a generalized fifth order KdV equations , 2003 .

[20]  Salah M. El-Sayed,et al.  An application of the decomposition method for the generalized KdV and RLW equations , 2003 .

[21]  Abdul-Majid Wazwaz,et al.  A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..

[22]  Dogan Kaya,et al.  Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation , 2004, Appl. Math. Comput..

[23]  D. Kaya Explicit Solutions of Generalized Nonlinear Boussinesq Equations , 2001 .

[24]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[25]  E. Zayed,et al.  On the solution of the nonlinear Schrodinger equation , 2003 .

[26]  A numerical study of the perturbed semiclassical focusing nonlinear Schrödinger equation , 2002 .

[27]  D. Kaya On the solution of a korteweg-de vries like equation by the decomposition method , 1999, Int. J. Comput. Math..

[28]  Do ˘ Kaya,et al.  An explicit solution of coupled viscous Burgers' equation by the decomposition method , 2001 .

[29]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..