Limit of normalized quadrangulations: The Brownian map

Consider qn a random pointed quadrangulation chosen equally likely among the pointed quadrangulations with n faces. In this paper we show that, when n goes to +∞, qn suitably normalized converges weakly in a certain sense to a random limit object, which is continuous and compact, and that we name the Brownian map. The same result is shown for a model of rooted quadrangulations and for some models of rooted quadrangulations with random edge lengths. A metric space of rooted (resp. pointed) abstract maps that contains the model of discrete rooted (resp. pointed) quadrangulations and the model of the Brownian map is defined. The weak convergences hold in these metric spaces.

[1]  Thomas Duquesne,et al.  Random Trees, Levy Processes and Spatial Branching Processes , 2002 .

[2]  Statistical Hausdorff dimension of labelled trees and quadrangulations , 2003 .

[3]  J. Pitman,et al.  The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin’s local time identity , 2004, math/0403137.

[4]  Edward A. Bender,et al.  Largest 4-Connected Components of 3-Connected Planar Triangulations , 1995, Random Struct. Algorithms.

[5]  Simplicial Quantum Gravity and Random Lattices , 1993, hep-th/9303127.

[6]  J. Bouttier,et al.  Statistics of planar graphs viewed from a vertex: A study via labeled trees , 2003, cond-mat/0307606.

[7]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[8]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[9]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[10]  Philippe Chassaing,et al.  Random planar lattices and integrated superBrownian excursion , 2002, math/0205226.

[11]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[12]  E. Bender,et al.  0-1 Laws for Maps , 1999, Random Struct. Algorithms.

[13]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[14]  Jean-François Marckert,et al.  The depth first processes of Galton--Watson trees converge to the same Brownian excursion , 2003 .

[15]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Nicholas C. Wormald,et al.  Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.

[18]  Jim Pitman,et al.  Limit Distributions and Random Trees Derived from the Birthday Problem with Unequal Probabilities , 2000 .

[20]  Jim Pitman,et al.  Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent , 2000 .

[21]  Valery A. Liskovets,et al.  Enumeration of nonisomorphic planar maps , 1981, J. Graph Theory.

[22]  Scaling in quantum gravity , 1995, hep-th/9501049.

[23]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[24]  W. T. Tutte On the enumeration of convex polyhedra , 1980, J. Comb. Theory, Ser. B.

[25]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[26]  T. F. Móri On random trees , 2002 .

[27]  Conditioned Brownian trees , 2005, math/0501066.

[28]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[29]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[30]  Svante Janson,et al.  Convergence of Discrete Snakes , 2005 .

[31]  G. Parisi,et al.  Planar diagrams , 1978 .

[32]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[33]  Jim Pitman,et al.  A family of random trees with random edge lengths , 1999, Random Struct. Algorithms.

[34]  J. L. Gall,et al.  Branching processes in Lévy processes: the exploration process , 1998 .

[35]  B. Durhuus,et al.  Local limit of labeled trees and expected volume growth in a random quadrangulation , 2003, math/0311532.

[36]  J. Pitman,et al.  Rayleigh processes, real trees, and root growth with re-grafting , 2004, math/0402293.

[37]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[38]  A. Mokkadem,et al.  A NOTE ON “ STATE SPACES OF THE SNAKE AND ITS TOUR – CONVERGENCE OF THE DISCRETE SNAKE , 2022 .

[39]  David W. Walkup,et al.  The number of plane trees , 1972 .

[40]  Zhicheng Gao,et al.  Root Vertex Valency Distributions of Rooted Maps and Rooted Triangulations , 1994, Eur. J. Comb..

[41]  A. Mokkadem,et al.  States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake , 2003 .

[42]  Laurent Serlet A large deviation principle for the Brownian snake , 1997 .