Efficient combination of Wang–Landau and transition matrix Monte Carlo methods for protein simulations

An efficient combination of the Wang‐Landau and transition matrix Monte Carlo methods for protein and peptide simulations is described. At the initial stage of simulation the algorithm behaves like the Wang‐Landau algorithm, allowing to sample the entire interval of energies, and at the later stages, it behaves like transition matrix Monte Carlo method and has significantly lower statistical errors. This combination allows to achieve fast convergence to the correct values of density of states. We propose that the violation of TTT identities may serve as a qualitative criterion to check the convergence of density of states. The simulation process can be parallelized by cutting the entire interval of simulation into subintervals. The violation of ergodicity in this case is discussed. We test the algorithm on a set of peptides of different lengths and observe good statistical convergent properties for the density of states. We believe that the method is of general nature and can be used for simulations of other systems with either discrete or continuous energy spectrum. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 715–726, 2007

[1]  M. Troyer,et al.  Performance limitations of flat-histogram methods. , 2003, Physical review letters.

[2]  Bernd A. Berg Algorithmic aspects of multicanonical simulations , 1997 .

[3]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[4]  Ulrich H. E. Hansmann,et al.  An enhanced version of SMMP - open-source software package for simulation of proteins , 2006, Comput. Phys. Commun..

[5]  U. Hansmann Generalized ensemble techniques and protein folding simulations , 2002 .

[6]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[7]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[8]  T. Penna,et al.  A Comparison Between Broad Histogram and Multicanonical Methods , 2000, cond-mat/0002176.

[9]  Chin-Kun Hu,et al.  Free energy landscape and folding mechanism of a β‐hairpin in explicit water: A replica exchange molecular dynamics study , 2005, Proteins.

[10]  P. G. Debenedetti,et al.  An improved Monte Carlo method for direct calculation of the density of states , 2003 .

[11]  T.J.P. Penna,et al.  Broad histogram Monte Carlo , 1998 .

[12]  H. Scheraga,et al.  Exact analytical loop closure in proteins using polynomial equations , 1999 .

[13]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[14]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[15]  Jian-Sheng Wang Is the broad histogram random walk dynamics correct? , 1999 .

[16]  Chen,et al.  Universal scaling functions in critical phenomena. , 1995, Physical review letters.

[17]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[18]  Chin-Kun Hu,et al.  UNIVERSALITY IN DYNAMIC CRITICAL PHENOMENA , 1997 .

[19]  Chin-Kun Hu,et al.  Percolation, clusters, and phase transitions in spin models , 1984 .

[20]  N. Go,et al.  Ring Closure and Local Conformational Deformations of Chain Molecules , 1970 .

[21]  H. Herrmann,et al.  Broad Histogram Method , 1996, cond-mat/9610041.

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  Yuko Okamoto,et al.  Prediction of peptide conformation by multicanonical algorithm: New approach to the multiple‐minima problem , 1993, J. Comput. Chem..

[24]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[25]  A. D. McLachlan,et al.  Solvation energy in protein folding and binding , 1986, Nature.

[26]  Kurt Binder,et al.  Monte Carlo and Molecular Dynamics Simulations Polymer , 1995 .

[27]  R. Swendsen,et al.  Transition Matrix Monte Carlo Method , 2001, cond-mat/0104418.

[28]  Ulrich H. E. Hansmann,et al.  SMMP) A modern package for simulation of proteins , 2001 .

[29]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[31]  C. Tanford Macromolecules , 1994, Nature.

[32]  Wolfhard Janke,et al.  Multicanonical Monte Carlo simulations , 1998 .

[33]  Shang‐keng Ma,et al.  Dynamic properties of a spin-glass model at low temperatures , 1979 .

[34]  P. Debenedetti,et al.  Flat-histogram dynamics and optimization in density of states simulations of fluids , 2004 .

[35]  Shun-Yun Hu,et al.  Multicanonical parallel simulations of proteins with continuous potentials , 2001, J. Comput. Chem..

[36]  Athanassios Z Panagiotopoulos,et al.  Generalization of the Wang-Landau method for off-lattice simulations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[38]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[39]  D. Huse,et al.  Optimizing the ensemble for equilibration in broad-histogram Monte Carlo simulations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M Müller,et al.  Avoiding boundary effects in Wang-Landau sampling. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Chin-Kun Hu Site-bond-correlated percolation and a sublattice dilute Potts model at finite temperatures , 1984 .

[42]  Hwee Kuan Lee,et al.  Convergence and refinement of the Wang-Landau algorithm , 2006, Comput. Phys. Commun..

[43]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[44]  Lik Wee Lee,et al.  Monte Carlo algorithms based on the number of potential moves , 1999 .

[45]  Lee,et al.  New Monte Carlo algorithm: Entropic sampling. , 1993, Physical review letters.

[46]  Harold A. Scheraga,et al.  MONTE CARLO SIMULATION OF A FIRST-ORDER TRANSITION FOR PROTEIN FOLDING , 1994 .

[47]  Chenggang Zhou,et al.  Understanding and improving the Wang-Landau algorithm. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  U H Hansmann,et al.  Proteinlike behavior of a spin system near the transition between a ferromagnet and a spin glass. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[50]  Hu,et al.  Universal Scaling Functions for Numbers of Percolating Clusters on Planar Lattices. , 1996, Physical review letters.

[51]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[52]  Hu Histogram Monte Carlo renormalization-group method for percolation problems. , 1992, Physical review. B, Condensed matter.

[53]  Ulrich H E Hansmann,et al.  Parallel tempering simulations of HP‐36 , 2003, Proteins.

[54]  Joseph B. Kadane,et al.  TRANSITION MATRIX MONTE CARLO , 1999 .