Feature Oriented Progressive Lossless Mesh Coding

A feature‐oriented generic progressive lossless mesh coder (FOLProM) is proposed to encode triangular meshes with arbitrarily complex geometry and topology. In this work, a sequence of levels of detail (LODs) are generated through iterative vertex set split and bounding volume subdivision. The incremental geometry and connectivity updates associated with each vertex set split and/or bounding volume subdivision are entropy coded. Due to the visual importance of sharp geometric features, the whole geometry coding process is optimized for a better presentation of geometric features, especially at low coding bitrates. Feature‐oriented optimization in FOLProM is performed in hierarchy control and adaptive quantization. Efficient coordinate representation and prediction schemes are employed to reduce the entropy of data significantly. Furthermore, a simple yet efficient connectivity coding scheme is proposed. It is shown that FOLProM offers a significant rate‐distortion (R‐D) gain over the prior art, which is especially obvious at low bitrates.

[1]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[2]  Valerio Pascucci,et al.  Progressive compression and transmission of arbitrary triangular meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[3]  Pierre Alliez,et al.  Recent advances in compression of 3D meshes , 2005, 2005 13th European Signal Processing Conference.

[4]  C.-C. Jay Kuo,et al.  Progressive coding of 3-D graphic models , 1998, Proc. IEEE.

[5]  Valerio Pascucci,et al.  Single Resolution Compression of Arbitrary Triangular Meshes with Properties , 1999, Data Compression Conference.

[6]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[7]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[8]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[9]  J. Snoeyink,et al.  Lossless Compression of Floating-Point Geometry , 2004 .

[10]  Volker Coors,et al.  Delphi: geometry-based connectivity prediction in triangle mesh compression , 2004, The Visual Computer.

[11]  Olivier Devillers,et al.  Progressive lossless compression of arbitrary simplicial complexes , 2002, SIGGRAPH.

[12]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[13]  David Levin,et al.  Progressive Compression of Arbitrary Triangular Meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[14]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[15]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[16]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[17]  Craig Gotsman,et al.  Efficient compression and rendering of multi-resolution meshes , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  C.-C. Jay Kuo,et al.  Technologies for 3D mesh compression: A survey , 2005, J. Vis. Commun. Image Represent..

[19]  Martin Isenburg,et al.  Lossless compression of predicted floating-point geometry , 2005, Comput. Aided Des..

[20]  Pierre Alliez,et al.  Valence‐Driven Connectivity Encoding for 3D Meshes , 2001, Comput. Graph. Forum.

[21]  Stéphane Mallat,et al.  Surface compression with geometric bandelets , 2005, ACM Trans. Graph..

[22]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[23]  Olivier Devillers,et al.  Geometric compression for interactive transmission , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[24]  Jarek Rossignac,et al.  Optimal bit allocation in compressed 3D models , 1999, Comput. Geom..

[25]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[26]  Valerio Pascucci,et al.  Single resolution compression of arbitrary triangular meshes with properties , 1999, Comput. Geom..

[27]  Rémy Prost,et al.  Progressive Lossless Mesh Compression Via Incremental Parametric Refinement , 2009, Comput. Graph. Forum.

[28]  C.-C. Jay Kuo,et al.  Progressive geometry coding of 3D meshes using hierarchical vertex set split , 2005, SPIE Optics + Photonics.

[29]  Jarek Rossignac,et al.  Piecewise Regular Meshes: Construction and Compression , 2002, Graph. Model..

[30]  S. Mallat,et al.  Surface compression with geometric bandelets , 2005, ACM Trans. Graph..

[31]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[32]  C.-C. Jay Kuo,et al.  Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition , 2005, ACM Trans. Graph..

[33]  Rémy Prost,et al.  Wavelet-based progressive compression scheme for triangle meshes: wavemesh , 2004, IEEE Transactions on Visualization and Computer Graphics.

[34]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[35]  A. Khodakovsky Normal Mesh Compression , 2000 .

[36]  C.-C. Jay Kuo,et al.  A novel and efficient progressive lossless mesh coder , 2006, SIGGRAPH '06.

[37]  Pierre Alliez,et al.  Progressive compression for lossless transmission of triangle meshes , 2001, SIGGRAPH.

[38]  Marco Attene,et al.  SwingWrapper: Retiling triangle meshes for better edgebreaker compression , 2003, TOGS.

[39]  Jovan Popovic,et al.  Progressive simplicial complexes , 1997, SIGGRAPH.

[40]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[41]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.