Bayesian model selection for multilevel models using integrated likelihoods
暂无分享,去创建一个
[1] S. Eglen,et al. Sepsis-3 criteria in AmsterdamUMCdb: open-source code implementation , 2022, GigaByte.
[2] Benjamin Letham,et al. Forecasting at Scale , 2018, PeerJ Prepr..
[3] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[4] J. Hilbe. Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .
[5] Tony O’Hagan. Bayes factors , 2006 .
[6] Andrew Gelman,et al. Multilevel (Hierarchical) Modeling: What It Can and Cannot Do , 2006, Technometrics.
[7] Eric R. Ziegel,et al. Multilevel Modelling of Health Statistics , 2002, Technometrics.
[8] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[9] Scott L. Zeger,et al. Marginalized Multilevel Models and Likelihood Inference , 2000 .
[10] A. O'Hagan,et al. Kendall's Advanced Theory of Statistics, Vol. 2b: Bayesian Inference. , 1996 .
[11] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[12] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[13] B. Carlin,et al. Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .
[14] Daniel Gianola,et al. Marginal likelihood and Bayesian approaches to the analysis of heterogeneous residual variances in mixed linear Gaussian models , 1992 .
[15] H. Goldstein,et al. Multilevel Models in Educational and Social Research. , 1988 .
[16] G. Casella. An Introduction to Empirical Bayes Data Analysis , 1985 .
[17] G. Box. Science and Statistics , 1976 .
[18] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .
[19] Arnaud Doucet,et al. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .
[20] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[21] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[22] T. Kloek,et al. Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .
[23] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[24] E. S. Pearson,et al. On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .
[25] L. M. M.-T.. Theory of Probability , 1929, Nature.
[26] HighWire Press. Philosophical transactions of the Royal Society of London. Series A, Containing papers of a mathematical or physical character , 1896 .