Low-Density Codes Based on Chaotic Systems for Simple Encoding

This paper proposes a new class of low-density generator-matrix codes (LDGM) based on chaotic dynamical systems. The codes are designed by controlling symbolic dynamics and using linear convolutional codes. Analyzing the complex structure of chaotic systems, iterative decoding is developed. The communication performance is studied, and convergence analysis of the iterative-decoding system is presented. Finally, comparison and advantages over LDGM linear block codes in terms of encoding complexity and bit-error-rate performance are described, and possible applications of our codes are discussed.

[1]  Javier Garcia-Frías,et al.  BICM for MIMO systems using low-density generator matrix (LDGM) codes , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[3]  Riccardo Rovatti,et al.  Chaotic Electronics in Telecommunications , 2000 .

[4]  Narsingh Deo,et al.  Graph Theory with Applications to Engineering and Computer Science , 1975, Networks.

[5]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[6]  Miguel A. F. Sanjuán,et al.  Chaos-Coded Modulations Over Rician and Rayleigh Flat Fading Channels , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Martin Hasler,et al.  Controlled One- and Multidimensional Modulations Using Chaotic Maps , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Shu Lin,et al.  Error Control Coding , 2004 .

[9]  Ali Emre Pusane,et al.  A Comparison Between LDPC Block and Convolutional Codes , 2006 .

[10]  Jung-Fu Cheng,et al.  Some High-Rate Near Capacity Codecs for the Gaussian Channel , 1996 .

[11]  Thomas J. Richardson,et al.  An Introduction to the Analysis of Iterative Coding Systems , 2001 .

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  Robert C. Williamson,et al.  Loop removal from LDPC codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[14]  Zbigniew Galias,et al.  On the optimal labeling for pseudo-chaotic phase hopping , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[15]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[16]  John G. Proakis,et al.  Digital Communications , 1983 .

[17]  Wei Zhong,et al.  Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix , 2003, IEEE Communications Letters.

[18]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[19]  K. V. Zakharchenko,et al.  Basic principles of direct chaotic communications , 2003 .

[20]  Raviraj S. Adve,et al.  Low-Complexity Cooperative Coding for Sensor Networks using Rateless and LDGM Codes , 2006, 2006 IEEE International Conference on Communications.

[21]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[22]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[23]  M. Valenti,et al.  Cooperative Diversity using Distributed Turbo Codes , 2003 .

[24]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[25]  Matthew C. Valenti,et al.  Distributed turbo coded diversity for relay channel , 2003 .