OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naïve and primed pluripotent states in human

[1]  J. Nichols,et al.  Naive stem cell blastocyst model captures human embryo lineage segregation , 2021, Cell stem cell.

[2]  G. Hon,et al.  Blastocyst-like structures generated from human pluripotent stem cells , 2021, Nature.

[3]  I. Okamoto,et al.  Capturing Human Trophoblast Development with Naïve Pluripotent Stem Cells In Vitro , 2020, bioRxiv.

[4]  Stéphanie Kilens,et al.  Induction of Human Trophoblast Stem Cells from Somatic Cells and Pluripotent Stem Cells. , 2020, Cell reports.

[5]  Qi Zhou,et al.  Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome Inactivation. , 2020, Cell stem cell.

[6]  Ting Wang,et al.  Derivation of trophoblast stem cells from naïve human pluripotent stem cells , 2020, eLife.

[7]  J. Nichols,et al.  Human Naïve Epiblast Cells Possess Unrestricted Lineage Potential , 2020, bioRxiv.

[8]  Yanhui Xu,et al.  Structure of nucleosome-bound human BAF complex , 2020, Science.

[9]  Yun Zheng,et al.  A developmental landscape of 3D-cultured human pre-gastrulation embryos , 2019, Nature.

[10]  K. Anderson,et al.  Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm , 2019, Development.

[11]  S. Dietmann,et al.  Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency , 2019, Stem cell reports.

[12]  G. Sanguinetti,et al.  Multi-omics profiling of mouse gastrulation at single cell resolution , 2019, Nature.

[13]  M. Shokhirev,et al.  Heterozygous Mutations in SMARCA2 Reprogram the Enhancer Landscape by Global Retargeting of SMARCA4. , 2019, Molecular cell.

[14]  Ting Wang,et al.  Improving ATAC-seq Data Analysis with AIAP, a Quality Control and Integrative Analysis Package , 2019, bioRxiv.

[15]  R. Jaenisch,et al.  Hominoid-Specific Transposable Elements and KZFPs Facilitate Human Embryonic Genome Activation and Control Transcription in Naive Human ESCs , 2019, Cell stem cell.

[16]  Michael B. Stadler,et al.  Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors , 2019, Nature.

[17]  Hatice S. Kaya-Okur,et al.  CUT&Tag for efficient epigenomic profiling of small samples and single cells , 2019, Nature Communications.

[18]  D. Cacchiarelli,et al.  Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics , 2018, Nature Cell Biology.

[19]  J. Ranish,et al.  Modular Organization and Assembly of SWI/SNF Family Chromatin Remodeling Complexes , 2018, Cell.

[20]  A. Sharrocks,et al.  ZIC3 Controls the Transition from Naive to Primed Pluripotency , 2018, bioRxiv.

[21]  Xuepeng Wang,et al.  Chromatin analysis in human early development reveals epigenetic transition during ZGA , 2018, Nature.

[22]  William A. Pastor,et al.  TFAP2C regulates transcription in human naive pluripotency by opening enhancers , 2018, Nature Cell Biology.

[23]  Hong Wang,et al.  Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naïve state , 2018, eLife.

[24]  T. Mikkelsen,et al.  Parallel derivation of isogenic human primed and naive induced pluripotent stem cells , 2018, Nature Communications.

[25]  Ge Guo,et al.  Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast , 2017, Development.

[26]  R. Lister,et al.  Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming , 2017, Nature Methods.

[27]  Daesik Kim,et al.  Genome editing reveals a role for OCT4 in human embryogenesis , 2017, Nature.

[28]  T. Magnuson,et al.  Co-regulation of transcription by BRG1 and BRM, two mutually exclusive SWI/SNF ATPase subunits , 2017, bioRxiv.

[29]  Paul Bertone,et al.  Epigenetic resetting of human pluripotency , 2017, Development.

[30]  S. Petropoulos,et al.  Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States , 2017, Cell stem cell.

[31]  Munazah Andrabi,et al.  ChIP-seq analysis of genomic binding regions of five major transcription factors highlights a central role for ZIC2 in the mouse epiblast stem cell gene regulatory network , 2017, Development.

[32]  R. Klose,et al.  The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells , 2017, eLife.

[33]  Jason D. Buenrostro,et al.  TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin , 2017, Nature Structural &Molecular Biology.

[34]  Austin G Smith Formative pluripotency: the executive phase in a developmental continuum , 2017, Development.

[35]  R. Jaenisch,et al.  Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation. , 2017, Cell stem cell.

[36]  N. Frydman,et al.  XACT Noncoding RNA Competes with XIST in the Control of X Chromosome Activity during Human Early Development , 2017, Cell stem cell.

[37]  R. Jaenisch,et al.  Molecular Criteria for Defining the Naive Human Pluripotent State , 2016, Cell stem cell.

[38]  Jianlong Wang,et al.  Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. , 2016, Cell stem cell.

[39]  I. Okamoto,et al.  A developmental coordinate of pluripotency among mice, monkeys and humans , 2016, Nature.

[40]  B. Bruneau,et al.  ATP-dependent chromatin remodeling during mammalian development , 2016, Development.

[41]  J. Nichols,et al.  Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass , 2016, Stem cell reports.

[42]  Sigal Shachar,et al.  3D Chromosome Regulatory Landscape of Human Pluripotent Cells. , 2016, Cell stem cell.

[43]  Ying Jin,et al.  Comprehensive profiling reveals mechanisms of SOX2-mediated cell fate specification in human ESCs and NPCs , 2016, Cell Research.

[44]  A. Meissner,et al.  Ground State Conditions Induce Rapid Reorganization of Core Pluripotency Factor Binding before Global Epigenetic Reprogramming. , 2015, Cell stem cell.

[45]  G. Crabtree,et al.  Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics , 2015, Science Advances.

[46]  R. Lahesmaa,et al.  The L1TD1 Protein Interactome Reveals the Importance of Post-transcriptional Regulation in Human Pluripotency , 2015, Stem cell reports.

[47]  W. Reik,et al.  Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. , 2014, Molecular cell.

[48]  G. Fan,et al.  The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. , 2014, Cell stem cell.

[49]  J. Nichols,et al.  Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human , 2014, Cell.

[50]  R. Mailman,et al.  Transcriptional Repression by the BRG1-SWI/SNF Complex Affects the Pluripotency of Human Embryonic Stem Cells , 2014, Stem cell reports.

[51]  R. Young,et al.  Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency , 2014, Cell stem cell.

[52]  A. Radzisheuskaya,et al.  Do all roads lead to Oct4? The emerging concepts of induced pluripotency , 2014, Trends in cell biology.

[53]  Amber L. Couzens,et al.  The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data , 2013, Nature Methods.

[54]  S. Bultman,et al.  Combined gene dosage requirement for SWI/SNF catalytic subunits during early mammalian development , 2013, Mammalian Genome.

[55]  W. Reik,et al.  Nanog-dependent function of Tet1 and Tet2 in establishment of pluripotency , 2013, Nature.

[56]  Avi Ma’ayan,et al.  Oct4 links multiple epigenetic pathways to the pluripotency network , 2011, Cell Research.

[57]  Jennifer A. Erwin,et al.  Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations , 2010, Cell.

[58]  Debbie L C van den Berg,et al.  An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells , 2010, Cell stem cell.

[59]  Marcos J. Araúzo-Bravo,et al.  Direct reprogramming of human neural stem cells by OCT4 , 2009, Nature.

[60]  J. Nichols,et al.  Naive and primed pluripotent states. , 2009, Cell stem cell.

[61]  Jonghwan Kim,et al.  Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells , 2009, Nature Protocols.

[62]  Alexey I Nesvizhskii,et al.  An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency , 2009, Proceedings of the National Academy of Sciences.

[63]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[64]  S. Orkin,et al.  An Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells , 2008, Cell.

[65]  J. Kiefer,et al.  Back to basics: Sox genes , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[66]  M. Trotter,et al.  Derivation of pluripotent epiblast stem cells from mammalian embryos , 2007, Nature.

[67]  R. McKay,et al.  New cell lines from mouse epiblast share defining features with human embryonic stem cells , 2007, Nature.

[68]  Stuart H. Orkin,et al.  A protein interaction network for pluripotency of embryonic stem cells , 2006, Nature.

[69]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[70]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[71]  W. Funkhouser,et al.  The Expression of the SWI/SNF ATPase Subunits BRG1 and BRM in Normal Human Tissues , 2005, Applied immunohistochemistry & molecular morphology : AIMM.

[72]  A. Skoultchi,et al.  The ISWI ATPase Snf2h is required for early mouse development , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  F Randazzo,et al.  A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. , 2000, Molecular cell.

[74]  J. Miyazaki,et al.  Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells , 2000, Nature Genetics.

[75]  H. Schöler,et al.  Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4 , 1998, Cell.

[76]  C. Muchardt,et al.  Differential preimplantation regulation of two mouse homologues of the yeast SWI2 protein , 1998, Developmental dynamics : an official publication of the American Association of Anatomists.

[77]  Weiqi Zhang,et al.  Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules , 2011, Cell Research.

[78]  李耀华,et al.  Continuum:越多元,越精彩 , 2011 .