Partially acoustic dark matter, interacting dark radiation, and large scale structure

A bstractThe standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H0 and the matter density perturbation σ8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ8 problem, while the presence of tightly coupled dark radiation ameliorates the H0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.

[1]  Adrian T. Lee,et al.  A GUIDE TO DESIGNING FUTURE GROUND-BASED COSMIC MICROWAVE BACKGROUND EXPERIMENTS , 2014 .

[2]  Jonathan L. Feng,et al.  The WIMPless Miracle , 2008 .

[3]  S. Hannestad,et al.  Precision measurements of large scale structure with future type Ia supernova surveys , 2007, 0705.0979.

[4]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[5]  Uros Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2004 .

[6]  J. Lesgourgues,et al.  A fresh look at linear cosmological constraints on a decaying Dark Matter component , 2016, 1606.02073.

[7]  Scott Dodelson,et al.  Cosmic Visions Dark Energy: Science , 2016, 1604.07626.

[8]  Jonathan L. Feng,et al.  Dark-matter particles without weak-scale masses or weak interactions. , 2008, Physical review letters.

[9]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[10]  David E. Kaplan,et al.  Dark atoms: asymmetry and direct detection , 2011, 1105.2073.

[11]  Hiranya V. Peiris,et al.  Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization , 2015, 1509.06770.

[12]  J. Berger,et al.  Detecting boosted dark matter from the Sun with large volume neutrino detectors , 2014, 1410.2246.

[13]  J. Lesgourgues,et al.  Neutrino cosmology and Planck , 2014, 1404.1740.

[14]  Shahab Joudaki,et al.  CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.

[15]  P. Ko,et al.  Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation , 2016, 1608.01083.

[16]  M. White,et al.  Dependence of the cosmic microwave background lensing power spectrum on the matter density , 2014, 1406.5459.

[17]  M. Schmaltz,et al.  Non-Abelian dark matter and dark radiation , 2015, 1505.03542.

[18]  JiJi Fan,et al.  Double-Disk Dark Matter , 2013, 1303.1521.

[19]  Sungwoo Hong,et al.  Hidden dark matter sector, dark radiation, and the CMB , 2015, 1505.04192.

[20]  M. Khlopov,et al.  Observational Physics of Mirror World , 1989 .

[21]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[22]  Kris Sigurdson,et al.  Cosmology of atomic dark matter , 2012, 1209.5752.

[23]  K. Dienes,et al.  Dynamical Dark Matter: I. Theoretical Overview , 2011, 1106.4546.

[24]  Kris Sigurdson,et al.  Constraints on large-scale dark acoustic oscillations from cosmology , 2013, 1310.3278.

[25]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[26]  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[27]  M. Pospelov,et al.  Secluded WIMP Dark Matter , 2007, 0711.4866.

[28]  L. Hall,et al.  A new candidate for dark matter , 1986 .

[29]  Daniel Baumann,et al.  Phases of new physics in the CMB , 2015, 1508.06342.

[30]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[31]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[32]  S. Nadathur,et al.  Decaying dark matter and the tension in σ8 , 2015, 1505.05511.

[33]  Douglas P. Finkbeiner,et al.  Exciting dark matter and the INTEGRAL/SPI 511 keV signal , 2007, astro-ph/0702587.

[34]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[35]  Wayne Hu Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination , 2008, 0802.3688.

[36]  C. A. Oxborrow,et al.  Planck 2015 results. XV. Gravitational lensing , 2015, 1502.01591.

[37]  Thomas D. Kitching,et al.  Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects? , 2016, 1602.02960.

[38]  L. Macri,et al.  To appear in the Astrophysical Journal A NEW CEPHEID DISTANCE TO THE MASER-HOST GALAXY NGC 4258 AND ITS IMPLICATIONS FOR THE HUBBLE CONSTANT 1 , 2006 .

[39]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[40]  L. Goodenough,et al.  High Energy Positrons and the WMAP Haze from Exciting Dark Matter , 2008, 0802.2922.

[41]  John M Boone,et al.  The trouble with CTD100. , 2007, Medical physics.

[42]  J. Lesgourgues,et al.  Evidence for dark matter interactions in cosmological precision data? , 2015, 1507.04351.

[43]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .

[44]  K. Masters,et al.  Estimation of the Hubble Constant and Constraint on Descriptions of Dark Energy , 2009, 0902.4255.

[45]  Adam G. Riess,et al.  The trouble with H0 , 2016, 1607.05617.

[46]  Jonathan L. Feng,et al.  Thermal relics in hidden sectors , 2008, 0808.2318.

[47]  H. Hoekstra,et al.  CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations , 2014, 1404.5469.

[48]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[49]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[50]  Keith R. Rehermann,et al.  Atomic dark matter , 2009, 0909.0753.

[51]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[52]  A. Moss,et al.  Tension between the power spectrum of density perturbations measured on large and small scales , 2014, 1409.2769.

[53]  L. Randall,et al.  Dark-disk universe. , 2013, Physical review letters.

[54]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[55]  K. Agashe,et al.  (In)Direct detection of boosted dark matter , 2014, 1405.7370.

[56]  P. Ko,et al.  Residual non-Abelian dark matter and dark radiation , 2016, 1609.02307.

[57]  A. Melchiorri,et al.  Reconciling Planck with the local value of H0 in extended parameter space , 2016, 1606.00634.

[58]  Phillip James Edwin Peebles,et al.  The role of neutrinos in the evolution of primeval adiabatic perturbations , 1973 .

[59]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[60]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[61]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.