Efficient finite element simulation of crack propagation using adaptive iterative solvers

This paper delivers an efficient solution technique for the numerical simulation of crack propagation of 2D linear elastic formulations based on finite elements together with the conjugate gradient method in order to solve the corresponding linear equation systems. The developed iterative numerical approach using hierarchical preconditioners has the interesting feature that the hierarchical data structure will not be destroyed during crack propagation. Thus, it is possible to simulate crack advance in a very effective numerical manner, including adaptive mesh refinement and mesh coarsening. Test examples are presented to illustrate the efficiency of the given approach. Numerical simulations of crack propagation are compared with experimental data. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[2]  René de Borst,et al.  Some recent issues in computational failure mechanics , 2001 .

[3]  Esteban Samaniego,et al.  On the strong discontinuity approach in finite deformation settings , 2003 .

[4]  Wing Kam Liu,et al.  Numerical simulations of strain localization in inelastic solids using mesh‐free methods , 2000 .

[5]  Arnd Meyer,et al.  Zur Berechnung von Spannungs- und Deformationsfeldern an Interface-Ecken im nichtlinearen Deformationsbereich auf Parallelrechnern , 1998 .

[6]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[7]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[8]  M. Kuna,et al.  Combined analytical and numerical solution of 2D interface corner configurations between dissimilar piezoelectric materials , 2004 .

[9]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[10]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[11]  Jacob Fish,et al.  Adaptive and hierarchical modelling of fatigue crack propagation , 1993 .

[12]  Toshihisa Nishioka,et al.  Computational dynamic fracture mechanics , 1997 .

[13]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[14]  Jin Wu,et al.  Development of the DYNA3D simulation code with automated fracture procedure for brick elements , 2003 .

[15]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[16]  R. S. Dunham,et al.  A contour integral computation of mixed-mode stress intensity factors , 1976, International Journal of Fracture.

[17]  I. Babuska,et al.  A numerical method with a posteriori error estimation for determining the path taken by a propagating crack , 1998 .

[18]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[19]  Ares J. Rosakis,et al.  Dynamic crack growth along a polymer composite–Homalite interface , 2003 .

[20]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[21]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part II: Level set update , 2002 .

[22]  Alan Needleman,et al.  Numerical modeling of crack growth under dynamic loading conditions , 1997 .

[23]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[24]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .