A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems
暂无分享,去创建一个
[1] Jue Yan,et al. THE DIRECT DISCONTINUOUS GALERKIN (DDG) METHOD FOR DIFFUSION WITH INTERFACE CORRECTIONS , 2010 .
[2] Hailiang Liu,et al. The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations , 2015, J. Sci. Comput..
[3] Hailiang Liu,et al. Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations , 2015, Math. Comput..
[4] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[5] Michael J. Holst,et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..
[6] Andreas Prohl,et al. Convergent discretizations for the Nernst–Planck–Poisson system , 2009, Numerische Mathematik.
[7] Stefano Micheletti,et al. Discretization of Semiconductor Device Problems (I) , 2005 .
[8] M. Kurnikova,et al. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.
[9] On large time asymptotics for drift-diffusion-poisson systems , 2000 .
[10] Diana Adler,et al. Electronic Transport In Mesoscopic Systems , 2016 .
[11] Dongqing Li. Electrokinetics in Microfluidics , 2004 .
[12] Hailiang Liu,et al. The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems , 2008, SIAM J. Numer. Anal..
[13] Benzhuo Lu,et al. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. , 2007, The Journal of chemical physics.
[14] M. Planck,et al. Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .
[15] H. Gajewski,et al. On the basic equations for carrier transport in semiconductors , 1986 .
[16] A. Nitzan,et al. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.
[17] Weishi Liu,et al. Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..
[18] Hailiang Liu,et al. An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations , 2016, J. Sci. Comput..
[19] M. S. Mock,et al. Analysis of mathematical models of semiconductors devices , 1983 .
[20] Jinchao Xu,et al. Energetically stable discretizations for charge transport and electrokinetic models , 2016, J. Comput. Phys..
[21] Hailiang Liu,et al. An Entropy Satisfying Conservative Method for the Fokker-Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model , 2012, SIAM J. Numer. Anal..
[22] Hailiang Liu,et al. A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..
[23] Qiong Zheng,et al. Second-order Poisson-Nernst-Planck solver for ion transport , 2011, J. Comput. Phys..
[24] Andrzej Lewenstam,et al. Application of Nernst–Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in real-time and space domains , 2001 .
[25] Weifu Fang,et al. Global Solutions of the Time-Dependent Drift-Diffusion Semiconductor Equations , 1995 .
[26] A. M. Anile,et al. Discretization of Semiconductor Device Problems (II) , 2005 .
[27] A. Bertozzi,et al. A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.
[28] Martin Z. Bazant,et al. Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..
[29] C. Schmeiser,et al. Semiconductor equations , 1990 .
[30] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[31] Mohammad Mirzadeh,et al. A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids , 2014, J. Comput. Phys..
[32] J. Carrillo,et al. Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.
[33] J. Cooley,et al. THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS. , 1965, Biophysical journal.
[34] A. Suroviec. Introduction to Electrochemistry , 2013 .
[35] K. Gärtner,et al. On the Discretization of van Roosbroeck’s Equations with Magnetic Field , 1996 .
[36] 横田 昌広,et al. S.Glasstone and R.H.Lovberg: Controlled Thermonuclear Reactions, D.van Nostrand Company, INC. Princeton, New Jersey 1960, 523頁, 15×23cm $5.60 , 1961 .
[37] Aleksei Aksimentiev,et al. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore. , 2014, Communications in computational physics.
[38] Francis Filbet,et al. Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model , 2007 .
[39] Piotr Biler,et al. The Debye system: existence and large time behavior of solutions , 1994 .
[40] Chi-Wang Shu,et al. Discontinuous Galerkin Methods: General Approach and Stability , 2008 .
[41] W. Nernst,et al. Die elektromotorische Wirksamkeit der Jonen , 1889 .
[42] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[43] Guo-Wei Wei,et al. Variational Multiscale Models for Charge Transport , 2012, SIAM Rev..
[44] Martin Burger,et al. Large time behavior of nonlocal aggregation models with nonlinear diffusion , 2008, Networks Heterog. Media.
[45] A. Lewenstam,et al. Numerical Solution of the Coupled Nernst-Planck and Poisson Equations for Liquid Junction and Ion Selective Membrane Potentials , 2003 .
[46] Peter A. Markowich,et al. The Stationary Semiconductor Device Equations. , 1987 .
[47] Andrea Bertozzi,et al. Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.
[48] Martin Burger,et al. On an aggregation model with long and short range interactions , 2007 .
[49] Claire Chainais-Hillairet,et al. Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis , 2003 .
[50] G. Wei,et al. Second-order Poisson Nernst-Planck solver for ion channel transport. , 2011, Journal of computational physics.
[51] Yiannis N. Kaznessis,et al. Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore , 2009, PLoS Comput. Biol..
[52] Piotr Biler,et al. Long Time Behavior of Solutions to Nernst – Planck and Debye – Hückel Drift – Diffusion Systems , 1999 .
[53] Hailiang Liu,et al. Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..
[54] Joseph W. Jerome. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices , 1995 .