A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson-Nernst-Planck systems

We design an arbitrary-order free energy satisfying discontinuous Galerkin (DG) method for solving time-dependent Poisson-Nernst-Planck systems. Both the semi-discrete and fully discrete DG methods are shown to satisfy the corresponding discrete free energy dissipation law for positive numerical solutions. Positivity of numerical solutions is enforced by an accuracy-preserving limiter in reference to positive cell averages. Numerical examples are presented to demonstrate the high resolution of the numerical algorithm and to illustrate the proven properties of mass conservation, free energy dissipation, as well as the preservation of steady states.

[1]  Jue Yan,et al.  THE DIRECT DISCONTINUOUS GALERKIN (DDG) METHOD FOR DIFFUSION WITH INTERFACE CORRECTIONS , 2010 .

[2]  Hailiang Liu,et al.  The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations , 2015, J. Sci. Comput..

[3]  Hailiang Liu,et al.  Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations , 2015, Math. Comput..

[4]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[5]  Michael J. Holst,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions , 2010, J. Comput. Phys..

[6]  Andreas Prohl,et al.  Convergent discretizations for the Nernst–Planck–Poisson system , 2009, Numerische Mathematik.

[7]  Stefano Micheletti,et al.  Discretization of Semiconductor Device Problems (I) , 2005 .

[8]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[9]  On large time asymptotics for drift-diffusion-poisson systems , 2000 .

[10]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[11]  Dongqing Li Electrokinetics in Microfluidics , 2004 .

[12]  Hailiang Liu,et al.  The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems , 2008, SIAM J. Numer. Anal..

[13]  Benzhuo Lu,et al.  Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. , 2007, The Journal of chemical physics.

[14]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[15]  H. Gajewski,et al.  On the basic equations for carrier transport in semiconductors , 1986 .

[16]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[17]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[18]  Hailiang Liu,et al.  An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations , 2016, J. Sci. Comput..

[19]  M. S. Mock,et al.  Analysis of mathematical models of semiconductors devices , 1983 .

[20]  Jinchao Xu,et al.  Energetically stable discretizations for charge transport and electrokinetic models , 2016, J. Comput. Phys..

[21]  Hailiang Liu,et al.  An Entropy Satisfying Conservative Method for the Fokker-Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model , 2012, SIAM J. Numer. Anal..

[22]  Hailiang Liu,et al.  A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..

[23]  Qiong Zheng,et al.  Second-order Poisson-Nernst-Planck solver for ion transport , 2011, J. Comput. Phys..

[24]  Andrzej Lewenstam,et al.  Application of Nernst–Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in real-time and space domains , 2001 .

[25]  Weifu Fang,et al.  Global Solutions of the Time-Dependent Drift-Diffusion Semiconductor Equations , 1995 .

[26]  A. M. Anile,et al.  Discretization of Semiconductor Device Problems (II) , 2005 .

[27]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[28]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[29]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[30]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[31]  Mohammad Mirzadeh,et al.  A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids , 2014, J. Comput. Phys..

[32]  J. Carrillo,et al.  Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions , 2008, 0801.2310.

[33]  J. Cooley,et al.  THE NUMERICAL SOLUTION OF THE TIME-DEPENDENT NERNST-PLANCK EQUATIONS. , 1965, Biophysical journal.

[34]  A. Suroviec Introduction to Electrochemistry , 2013 .

[35]  K. Gärtner,et al.  On the Discretization of van Roosbroeck’s Equations with Magnetic Field , 1996 .

[36]  横田 昌広,et al.  S.Glasstone and R.H.Lovberg: Controlled Thermonuclear Reactions, D.van Nostrand Company, INC. Princeton, New Jersey 1960, 523頁, 15×23cm $5.60 , 1961 .

[37]  Aleksei Aksimentiev,et al.  A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore. , 2014, Communications in computational physics.

[38]  Francis Filbet,et al.  Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model , 2007 .

[39]  Piotr Biler,et al.  The Debye system: existence and large time behavior of solutions , 1994 .

[40]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: General Approach and Stability , 2008 .

[41]  W. Nernst,et al.  Die elektromotorische Wirksamkeit der Jonen , 1889 .

[42]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[43]  Guo-Wei Wei,et al.  Variational Multiscale Models for Charge Transport , 2012, SIAM Rev..

[44]  Martin Burger,et al.  Large time behavior of nonlocal aggregation models with nonlinear diffusion , 2008, Networks Heterog. Media.

[45]  A. Lewenstam,et al.  Numerical Solution of the Coupled Nernst-Planck and Poisson Equations for Liquid Junction and Ion Selective Membrane Potentials , 2003 .

[46]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[47]  Andrea Bertozzi,et al.  Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.

[48]  Martin Burger,et al.  On an aggregation model with long and short range interactions , 2007 .

[49]  Claire Chainais-Hillairet,et al.  Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis , 2003 .

[50]  G. Wei,et al.  Second-order Poisson Nernst-Planck solver for ion channel transport. , 2011, Journal of computational physics.

[51]  Yiannis N. Kaznessis,et al.  Poisson-Nernst-Planck Models of Nonequilibrium Ion Electrodiffusion through a Protegrin Transmembrane Pore , 2009, PLoS Comput. Biol..

[52]  Piotr Biler,et al.  Long Time Behavior of Solutions to Nernst – Planck and Debye – Hückel Drift – Diffusion Systems , 1999 .

[53]  Hailiang Liu,et al.  Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations , 2014, SIAM J. Sci. Comput..

[54]  Joseph W. Jerome Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices , 1995 .