Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt

[1]  D. Vlachos,et al.  A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals , 2007 .

[2]  D. Vlachos,et al.  Optimal reactor dimensions for homogeneous combustion in small channels , 2007 .

[3]  Yong Wang,et al.  From seconds to milliseconds to microseconds through tailored microchannel reactor design of a steam methane reformer , 2007 .

[4]  Soichiro Kato,et al.  Development and scale effects of small Swiss-roll combustors , 2007 .

[5]  D. Vlachos,et al.  Extending the region of stable homogeneous micro-combustion through forced unsteady operation , 2007 .

[6]  Konstantinos Boulouchos,et al.  Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors☆ , 2007 .

[7]  H. Im,et al.  Effects of dilution on the extinction characteristics of strained lean premixed flames assisted by catalytic reaction , 2007 .

[8]  D. G. Norton,et al.  Catalytic microcombustors with integrated thermoelectric elements for portable power production , 2006 .

[9]  F. S. Marra,et al.  Transport phenomena in a catalytic monolith: Effect of the superficial reaction , 2006 .

[10]  Eric D. Wetzel,et al.  Thermal Management in Catalytic Microreactors , 2006 .

[11]  A. Datye,et al.  Comparison of wall-coated and packed-bed reactors for steam reforming of methanol , 2005 .

[12]  D. Vlachos,et al.  Effect of flow configuration on the operation of coupled combustor/reformer microdevices for hydrogen production , 2005 .

[13]  D G Vlachos,et al.  Hierarchical multiscale mechanism development for methane partial oxidation and reforming and for thermal decomposition of oxygenates on Rh. , 2005, The journal of physical chemistry. B.

[14]  Andrei G. Fedorov,et al.  Hydrogen generation in a reverse‐flow microreactor: 1. Model formulation and scaling , 2005 .

[15]  R. S. Besser,et al.  Preferential oxidation (PrOx) in a thin-film catalytic microreactor: Advantages and limitations , 2005 .

[16]  Aristides Morillo,et al.  Heat‐Integrated Reactor Concepts for Hydrogen Production by Methane Steam Reforming , 2005 .

[17]  Christopher P. Cadou,et al.  The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors , 2005 .

[18]  Mark Short,et al.  Submillimeter‐scale combustion , 2004 .

[19]  D. G. Norton,et al.  A CFD study of propane/air microflame stability , 2004 .

[20]  Dionisios G. Vlachos,et al.  Fabrication of Single-Channel Catalytic Microburners: Effect of Confinement on the Oxidation of Hydrogen/Air Mixtures , 2004 .

[21]  C. Shu,et al.  A prototype microthermophotovoltaic power generator , 2004 .

[22]  Edmund G Seebauer,et al.  Porous anodic alumina microreactors for production of hydrogen from ammonia , 2004 .

[23]  Gunther Kolb,et al.  Micro-structured reactors for gas phase reactions , 2004 .

[24]  M. Kothare,et al.  A microreactor for hydrogen production in micro fuel cell applications , 2004, Journal of Microelectromechanical Systems.

[25]  Dionisios G. Vlachos,et al.  Microreactor Modeling for Hydrogen Production from Ammonia Decomposition on Ruthenium , 2004 .

[26]  D. G. Norton,et al.  Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures , 2003 .

[27]  Philip Kiameh,et al.  Power generation handbook : selection, applications, operation, and maintenance , 2003 .

[28]  A. Carlos Fernandez-Pello,et al.  Micropower generation using combustion: Issues and approaches , 2002 .

[29]  D. G. Norton,et al.  Modeling of high-temperature microburners , 2002 .

[30]  Philippe Thevenin,et al.  Catalytic combustion of methane , 2002 .

[31]  J. C. Schouten,et al.  Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction , 2001 .

[32]  Nikunj Gupta,et al.  Heat and mass transfer coefficients in catalytic monoliths , 2001 .

[33]  K. Jensen Microreaction engineering * is small better? , 2001 .

[34]  C. Apesteguía,et al.  Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts , 2000 .

[35]  D. Vlachos,et al.  The role of radical wall quenching in flame stability and wall heat flux: hydrogen-air mixtures , 1998 .

[36]  R. E. Hayes,et al.  Introduction to Catalytic Combustion , 1998 .

[37]  E. Shustorovich,et al.  The UBI-QEP method: A practical theoretical approach to understanding chemistry on transition metal surfaces , 1998 .

[38]  Michael P. Harold,et al.  Micromachined reactors for catalytic partial oxidation reactions , 1997 .

[39]  F. Zaera,et al.  Kinetic study of the catalytic oxidation of alkanes over nickel, palladium, and platinum foils , 1997 .

[40]  David L. Trimm,et al.  The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. The kinetics of the catalytic oxidation of light hydrocarbons , 1996 .

[41]  Pio Forzatti,et al.  A comparison of lumped and distributed models of monolith catalytic combustors , 1995 .

[42]  Isabelle Zdanevitch,et al.  Catalytic oxidation of methane on platinum thin films , 1992 .

[43]  Robert F. Hicks,et al.  Structure sensitivity of methane oxidation over platinum and palladium , 1990 .

[44]  James A. Miller,et al.  The Chemkin Thermodynamic Data Base , 1990 .

[45]  K. Otto,et al.  Methane oxidation over Pt on .gamma.-alumina: kinetics and structure sensitivity , 1989 .

[46]  Robert J. Kee,et al.  A FORTRAN COMPUTER CODE PACKAGE FOR THE EVALUATION OF GAS-PHASE, MULTICOMPONENT TRANSPORT PROPERTIES , 1986 .

[47]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .

[48]  Yung-Fang Yu Yao,et al.  Oxidation of Alkanes over Noble Metal Catalysts , 1980 .

[49]  R. Shah Laminar Flow Forced convection in ducts , 1978 .

[50]  John J. McKetta,et al.  Encyclopedia of Chemical Processing and Design , 1976 .