Fatigue assessment of notched specimens by means of a critical plane-based criterion and energy concepts

Abstract A strain-based multiaxial fatigue criterion previously proposed for fatigue assessment of unnotched specimens is here extended to the case of notched ones. Such a criterion is a reformulation of the stress-based multiaxial High-Cycle Fatigue (HCF) criterion by Carpinteri and Spagnoli. The extension herein presented considers as the critical point, where to perform the fatigue assessment, the material point located at a certain distance from the notch tip, depending such a distance on both the biaxiality ratio (defined as the ratio between the applied shear stress amplitude and the normal stress amplitude) and the control volume radii R 1 (related to Mode I) and R 3 (related to Mode III). Some multiaxial fatigue data related to specimens made of titanium grade 5 alloy (Ti–6Al–4V) and weakened by sharp notches are examined to validate the extended criterion.

[1]  Andrea Carpinteri,et al.  An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C‐S (Carpinteri‐Spagnoli) criterion , 2014 .

[2]  Filippo Berto,et al.  Multiaxial fatigue of V-notched steel specimens: a non-conventional application of the local energy method , 2011 .

[3]  C. M. Sonsino,et al.  A notch stress intensity approach to assess the multiaxial fatigue strength of welded tube‐to‐flange joints subjected to combined loadings , 2004 .

[4]  Filippo Berto,et al.  Multiaxial fatigue strength of severely notched cast iron specimens , 2014 .

[5]  Andrea Carpinteri,et al.  Expected position of the fatigue fracture plane by using the weighted mean principal Euler angles , 2002 .

[6]  K. Kluger Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress , 2015 .

[7]  Andrea Carpinteri,et al.  Lifetime estimation in the low/medium-cycle regime using the Carpinteri–Spagnoli multiaxial fatigue criterion , 2014 .

[8]  A. B. Zhuravlev,et al.  Models of multiaxial fatigue fracture and service life estimation of structural elements , 2011 .

[9]  Paolo Lazzarin,et al.  A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches , 2001 .

[10]  Filippo Berto,et al.  Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading , 2014 .

[11]  Jing Li,et al.  Fatigue life prediction for some metallic materials under constant amplitude multiaxial loading , 2014 .

[12]  Mácha,et al.  Energy criteria of multiaxial fatigue failure , 1999 .

[13]  Filippo Berto,et al.  Multi-axial fatigue behaviour of a severely notched carbon steel , 2006 .

[14]  Adam Niesłony,et al.  Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method , 2010 .

[15]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[16]  Cetin Morris Sonsino,et al.  Application of stress-based multiaxial fatigue criteria for laserbeam-welded thin aluminium joints under proportional and non-proportional variable amplitude loadings , 2014 .

[17]  Luis Reis,et al.  Minimum Circumscribed Ellipse (MCE) and Stress Scale Factor (SSF) criteria for multiaxial fatigue life assessment , 2014 .

[18]  T. M. Jasper,et al.  LXVII. The value of the energy relation in the testing of ferrous metals at varying ranges of stress and at intermediate and high temperatures , 1923 .

[19]  Fernand Ellyin,et al.  Cyclic Strain Energy Density as a Criterion for Multiaxial Fatigue Failure , 2013 .

[20]  Filippo Berto,et al.  Fatigue strength of severely notched specimens made of Ti–6Al–4V under multiaxial loading , 2015 .

[21]  A. Carpinteri,et al.  Structural integrity assessment of metallic components under multiaxial fatigue: the C–S criterion and its evolution , 2012 .

[22]  Drew V. Nelson,et al.  Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life , 2000 .

[23]  Marina Franulović,et al.  Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials , 2011 .

[24]  F. Ellyin Fatigue Damage, Crack Growth and Life Prediction , 1996 .

[25]  Ewald Macha,et al.  Verification of fatigue critical plane position according to variance and damage accumulation methods under multiaxial loading , 2014 .

[26]  Tadeusz Łagoda,et al.  Lifetime of semi-ductile materials through the critical plane approach , 2014 .

[27]  D. Kujawski,et al.  On deviatoric interpretation of Neuber’s rule and the SWT parameter , 2014 .

[28]  Andrea Carpinteri,et al.  Multiaxial fatigue assessment using a simplified critical plane-based criterion , 2011 .

[29]  Andrea Carpinteri,et al.  Fatigue life estimation for multiaxial low-cycle fatigue regime: The influence of the effective Poisson ratio value , 2015 .

[30]  I. Papadopoulos,et al.  Critical plane approaches in high-cycle fatigue : On the definition of the amplitude and mean value of the shear stress acting on the critical plane , 1998 .

[31]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[32]  Michael Vormwald,et al.  A unified expression of elastic-plastic notch stress-strain calculation in bodies subjected to multiaxial , 2008 .

[33]  Andrea Carpinteri,et al.  Life estimation by varying the critical plane orientation in the modified Carpinteri-Spagnoli criterion , 2015 .

[34]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[35]  Andrea Carpinteri,et al.  On the use of the Prismatic Hull method in a critical plane-based multiaxial fatigue criterion , 2014 .

[36]  Xu Chen,et al.  Estimation methods for fatigue properties of steels under axial and torsional loading , 2002 .

[37]  Luca Susmel,et al.  Multiaxial notch fatigue , 2009 .

[38]  D. Kujawski A deviatoric version of the SWT parameter , 2014 .

[39]  Andrea Carpinteri,et al.  Multiaxial high-cycle fatigue criterion for hard metals , 2001 .

[40]  Luca Susmel,et al.  Estimating the orientation of Stage I crack paths through the direction of maximum variance of the resolved shear stress , 2014 .

[41]  A. Carpinteri,et al.  A Strain-based Multiaxial Fatigue Criterion Connected to the Critical Plane Approach , 2014 .

[42]  Ali Fatemi,et al.  Multiaxial Fatigue Life Predictions Under the Influence of Mean-Stresses , 1988 .