The fractional multivariate normal tempered stable process

Abstract In this paper, the multivariate process having long-range dependency is presented. The process is defined by the time-changed fractional Brownian motion whose subordinator is given by the fractional tempered stable subordinator. The fractional tempered stable subordinator is a generalization of the non-decreasing tempered stable process with long-range dependence. The multivariate process allows for (1) the long-range dependence in the endogenous noise, (2) the long-range dependence in time or the volatility, (3) the fat-tailed marginal distribution, and (4) an asymmetric dependence structure between elements. Numerical methods to generating sample paths for the process are discussed.

[1]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[2]  J. Duan THE GARCH OPTION PRICING MODEL , 1995 .

[3]  C. Houdré,et al.  On fractional tempered stable motion , 2005, math/0503741.

[4]  Frank J. Fabozzi,et al.  Long-Range Dependence, Fractal Processes, and Intra-Daily Data , 2008 .

[5]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[6]  L. Coutin,et al.  Stochastic integration with respect to fractional brownian motion , 2003 .

[7]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[8]  Detlef Seese,et al.  Handbook on Information Technology in Finance , 2008 .

[9]  Svetlozar T. Rachev,et al.  Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model , 2012, Ann. Oper. Res..

[10]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[11]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[12]  Svetlozar T. Rachev,et al.  Tempered stable and tempered infinitely divisible GARCH models , 2010 .

[13]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[14]  Svetlozar T. Rachev,et al.  Tempered Infinitely Divisible Distributions and Processes , 2011 .

[15]  S. Rachev,et al.  Time series analysis for financial market meltdowns , 2011 .

[16]  Sergei Levendorskii,et al.  Feller processes of normal inverse Gaussian type , 2001 .

[17]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.