H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes

A finite element cochain complex on Cartesian meshes of any dimension based on the H1-inner product is introduced. It yields H1-conforming finite element spaces with exterior derivatives in H1. We use a tensor product construction to obtain L2-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order.

[1]  Guido Kanschat,et al.  A Differentiable Mapping of Mesh Cells Based on Finite Elements on Quadrilateral and Hexahedral Meshes , 2018 .

[2]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[3]  M. Neilan,et al.  MACRO STOKES ELEMENTS ON QUADRILATERALS , 2018 .

[4]  Joachim Sch Oberl COMMUTING QUASI INTERPOLATION OPERATORS FOR MIXED FINITE ELEMENTS , 2004 .

[5]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[6]  Francesca Bonizzoni,et al.  Finite element differential forms on curvilinear cubic meshes and their approximation properties , 2012, Numerische Mathematik.

[7]  Douglas N. Arnold,et al.  Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..

[8]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[9]  Shangyou Zhang,et al.  A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..

[10]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[11]  M. Neilan,et al.  Stokes elements on cubic meshes yielding divergence-free approximations , 2016 .

[12]  Snorre H. Christiansen,et al.  Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension , 2007, Numerische Mathematik.

[13]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[14]  Jean-Luc Guermond,et al.  Finite element quasi-interpolation and best approximation , 2015, 1505.06931.

[15]  F. Nobile,et al.  Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term , 2014 .

[16]  Guido Kanschat,et al.  A contraction property of an adaptive divergence-conforming discontinuous Galerkin method for the Stokes problem , 2018, J. Num. Math..

[17]  Wolfgang Hackbusch,et al.  Numerical tensor calculus* , 2014, Acta Numerica.

[18]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[19]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[20]  GUIDO KANSCHAT,et al.  Divergence-Conforming Discontinuous Galerkin Methods and C0 Interior Penalty Methods , 2014, SIAM J. Numer. Anal..

[21]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[22]  Thomas A. Manteuffel,et al.  A robust multilevel approach for minimizing H(div)-dominated functionals in an H1-conforming finite element space , 2004, Numer. Linear Algebra Appl..

[23]  Michael Neilan The Stokes complex: A review of exactly divergence-free finite element pairs for incompressible flows , 2020, 75 Years of Mathematics of Computation.

[24]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[25]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .