暂无分享,去创建一个
[1] Guido Kanschat,et al. A Differentiable Mapping of Mesh Cells Based on Finite Elements on Quadrilateral and Hexahedral Meshes , 2018 .
[2] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[3] M. Neilan,et al. MACRO STOKES ELEMENTS ON QUADRILATERALS , 2018 .
[4] Joachim Sch Oberl. COMMUTING QUASI INTERPOLATION OPERATORS FOR MIXED FINITE ELEMENTS , 2004 .
[5] Christoph Lehrenfeld,et al. Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.
[6] Francesca Bonizzoni,et al. Finite element differential forms on curvilinear cubic meshes and their approximation properties , 2012, Numerische Mathematik.
[7] Douglas N. Arnold,et al. Quadrilateral H(div) Finite Elements , 2004, SIAM J. Numer. Anal..
[8] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[9] Shangyou Zhang,et al. A Family of Qk+1, k˟Qk, k+1 Divergence-Free Finite Elements on Rectangular Grids , 2009, SIAM J. Numer. Anal..
[10] D. Arnold,et al. Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.
[11] M. Neilan,et al. Stokes elements on cubic meshes yielding divergence-free approximations , 2016 .
[12] Snorre H. Christiansen,et al. Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension , 2007, Numerische Mathematik.
[13] Thomas J. R. Hughes,et al. Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..
[14] Jean-Luc Guermond,et al. Finite element quasi-interpolation and best approximation , 2015, 1505.06931.
[15] F. Nobile,et al. Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term , 2014 .
[16] Guido Kanschat,et al. A contraction property of an adaptive divergence-conforming discontinuous Galerkin method for the Stokes problem , 2018, J. Num. Math..
[17] Wolfgang Hackbusch,et al. Numerical tensor calculus* , 2014, Acta Numerica.
[18] Joachim Schöberl,et al. A posteriori error estimates for Maxwell equations , 2007, Math. Comput..
[19] Guido Kanschat,et al. A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..
[20] GUIDO KANSCHAT,et al. Divergence-Conforming Discontinuous Galerkin Methods and C0 Interior Penalty Methods , 2014, SIAM J. Numer. Anal..
[21] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[22] Thomas A. Manteuffel,et al. A robust multilevel approach for minimizing H(div)-dominated functionals in an H1-conforming finite element space , 2004, Numer. Linear Algebra Appl..
[23] Michael Neilan. The Stokes complex: A review of exactly divergence-free finite element pairs for incompressible flows , 2020, 75 Years of Mathematics of Computation.
[24] Giancarlo Sangalli,et al. IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .
[25] P. Hansbo,et al. CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .