Semantics-Empowered Communication: A Tutorial-cum-Survey

Along with the springing up of the semantics-empowered communication (SemCom) research, it is now witnessing an unprecedentedly growing interest towards a wide range of aspects (e.g., theories, applications, metrics and implementations) in both academia and industry. In this work, we primarily aim to provide a comprehensive survey on both the background and research taxonomy, as well as a detailed technical tutorial. Specifically, we start by reviewing the literature and answering the"what"and"why"questions in semantic transmissions. Afterwards, we present the ecosystems of SemCom, including history, theories, metrics, datasets and toolkits, on top of which the taxonomy for research directions is presented. Furthermore, we propose to categorize the critical enabling techniques by explicit and implicit reasoning-based methods, and elaborate on how they evolve and contribute to modern content&channel semantics-empowered communications. Besides reviewing and summarizing the latest efforts in SemCom, we discuss the relations with other communication levels (e.g., conventional communications) from a holistic and unified viewpoint. Subsequently, in order to facilitate future developments and industrial applications, we also highlight advanced practical techniques for boosting semantic accuracy, robustness, and large-scale scalability, just to mention a few. Finally, we discuss the technical challenges that shed light on future research opportunities.

[1]  E. Hossain,et al.  NetGPT: A Native-AI Network Architecture Beyond Provisioning Personalized Generative Services , 2023, ArXiv.

[2]  Xiaofeng Tao,et al.  Model division multiple access for semantic communications , 2023, Frontiers of Information Technology & Electronic Engineering.

[3]  Henrique Pondé de Oliveira Pinto,et al.  GPT-4 Technical Report , 2023, 2303.08774.

[4]  Chenfei Wu,et al.  Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models , 2023, ArXiv.

[5]  Rongpeng Li,et al.  Knowledge Enhanced Semantic Communication Receiver , 2023, IEEE Communications Letters.

[6]  F. Gao,et al.  Vision Aided Environment Semantics Extraction and Its Application in mmWave Beam Selection , 2023, IEEE Communications Letters.

[7]  F. Gao,et al.  Environment Semantics Aided Wireless Communications: A Case Study of mmWave Beam Prediction and Blockage Prediction , 2023, IEEE Journal on Selected Areas in Communications.

[8]  F. Gao,et al.  A Generalized Semantic Communication System: From Sources to Channels , 2023, IEEE Wireless Communications.

[9]  M. Debbah,et al.  Less Data, More Knowledge: Building Next Generation Semantic Communication Networks , 2022, IEEE Communications Surveys & Tutorials.

[10]  M. Bennis,et al.  Goal-Oriented Communications for the IoT and Application to Data Compression , 2022, IEEE Internet of Things Magazine.

[11]  Guanding Yu,et al.  A Unified Multi-Task Semantic Communication System for Multimodal Data , 2022, IEEE Transactions on Communications.

[12]  O. Dobre,et al.  Few-Shot Learning UAV Recognition Methods Based on the Tri-Residual Semantic Network , 2022, IEEE Communications Letters.

[13]  R. Shokri,et al.  Data Privacy and Trustworthy Machine Learning , 2022, IEEE Security & Privacy.

[14]  Siheng Chen,et al.  Collaborative Perception for Autonomous Driving: Current Status and Future Trend , 2022, ArXiv.

[15]  W. Saad,et al.  Performance Optimization for Semantic Communications: An Attention-Based Reinforcement Learning Approach , 2022, IEEE Journal on Selected Areas in Communications.

[16]  B. Natarajan,et al.  Engineering Semantic Communication: A Survey , 2022, IEEE Access.

[17]  Xiaoming Tao,et al.  Toward Semantic Communications: Deep Learning-Based Image Semantic Coding , 2022, IEEE Journal on Selected Areas in Communications.

[18]  Dong In Kim,et al.  Economics of Semantic Communication System: An Auction Approach , 2022, IEEE Transactions on Vehicular Technology.

[19]  Lei Cui,et al.  A Comprehensive Survey on Poisoning Attacks and Countermeasures in Machine Learning , 2022, ACM Comput. Surv..

[20]  Rongpeng Li,et al.  Contrastive Monotonic Pixel-Level Modulation , 2022, ECCV.

[21]  Praveen Kumar Reddy Maddikunta,et al.  Autonomous Vehicles in 5G and Beyond: A Survey , 2022, Veh. Commun..

[22]  J. Shah,et al.  Towards Human-Agent Communication via the Information Bottleneck Principle , 2022, ArXiv.

[23]  O. Simeone,et al.  Neuromorphic Wireless Cognition: Event-Driven Semantic Communications for Remote Inference , 2022, IEEE Transactions on Cognitive Communications and Networking.

[24]  Wei Yang Bryan Lim,et al.  Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges , 2022, IEEE Communications Surveys & Tutorials.

[25]  Derrick Wing Kwan Ng,et al.  Edge Learning for B5G Networks With Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing , 2022, IEEE Journal of Selected Topics in Signal Processing.

[26]  Zhongwei Si,et al.  Wireless Deep Video Semantic Transmission , 2022, IEEE Journal on Selected Areas in Communications.

[27]  Tian Han,et al.  Semantic-Preserved Communication System for Highly Efficient Speech Transmission , 2022, IEEE Journal on Selected Areas in Communications.

[28]  Mingzhe Chen,et al.  Performance Optimization for Wireless Semantic Communications over Energy Harvesting Networks , 2022, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  W. Saad,et al.  Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic Communication , 2022, GLOBECOM 2022 - 2022 IEEE Global Communications Conference.

[30]  Geoffrey Y. Li,et al.  Deep Learning Enabled Semantic Communications With Speech Recognition and Synthesis , 2022, IEEE Transactions on Wireless Communications.

[31]  L. Dai,et al.  Demo: Real-Time Semantic Communications with a Vision Transformer , 2022, 2022 IEEE International Conference on Communications Workshops (ICC Workshops).

[32]  K. Letaief,et al.  Deep Learning-Enabled Semantic Communication Systems With Task-Unaware Transmitter and Dynamic Data , 2022, IEEE Journal on Selected Areas in Communications.

[33]  Caili Guo,et al.  Adaptable Semantic Compression and Resource Allocation for Task-Oriented Communications , 2022, 2204.08910.

[34]  Honggang Zhang,et al.  Adaptive Bit Rate Control in Semantic Communication With Incremental Knowledge-Based HARQ , 2022, IEEE Open Journal of the Communications Society.

[35]  Pawan Meena,et al.  6G Communication Networks: Introduction, Vision, Challenges, and Future Directions , 2022, Wireless Personal Communications.

[36]  Xinyuan Zhang,et al.  Cognitive Semantic Communication Systems Driven by Knowledge Graph , 2022, ICC 2022 - IEEE International Conference on Communications.

[37]  K. B. Letaief,et al.  Semantic Communication Meets Edge Intelligence , 2022, IEEE Wireless Communications.

[38]  Shuaishuai Guo,et al.  Signal Shaping for Semantic Communications , 2022 .

[39]  Xu Zhang,et al.  Rate-Distortion Theory for Strategic Semantic Communication , 2022, 2022 IEEE Information Theory Workshop (ITW).

[40]  Wali Ullah Khan,et al.  A Survey on Semantic Communications for Intelligent Wireless Networks , 2022, Wireless Personal Communications.

[41]  Jiming Chen,et al.  Wireless Transmission of Images with the Assistance of Multi-level Semantic Information , 2022, 2022 International Symposium on Wireless Communication Systems (ISWCS).

[42]  Guanding Yu,et al.  Robust Semantic Communications Against Semantic Noise , 2022, 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall).

[43]  M. Bennis,et al.  Life-long Learning for Reasoning-based Semantic Communication , 2022, 2022 IEEE International Conference on Communications Workshops (ICC Workshops).

[44]  H. V. Poor,et al.  Reasoning on the Air: An Implicit Semantic Communication Architecture , 2022, 2022 IEEE International Conference on Communications Workshops (ICC Workshops).

[45]  Yang Wang,et al.  Signal Shaping for Semantic Communication Systems with A Few Message Candidates , 2022, 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall).

[46]  Qing Guo,et al.  Semantic Communications: Overview, Open Issues, and Future Research Directions , 2022, IEEE Wireless Communications.

[47]  Caili Guo,et al.  Semantic-assisted image compression , 2022, ArXiv.

[48]  Md. Jalil Piran,et al.  Learning-Driven Lossy Image Compression; A Comprehensive Survey , 2022, Engineering Applications of Artificial Intelligence.

[49]  Seng W. Loke,et al.  A Unified View on Semantic Information and Communication: A Probabilistic Logic Approach , 2022, 2022 IEEE International Conference on Communications Workshops (ICC Workshops).

[50]  Geoffrey Y. Li,et al.  Semantic Communications: Principles and Challenges , 2021, ArXiv.

[51]  F. Richard Yu,et al.  Task-Oriented Image Transmission for Scene Classification in Unmanned Aerial Systems , 2021, IEEE Transactions on Communications.

[52]  K. B. Letaief,et al.  Task-Oriented Multi-User Semantic Communications , 2021, IEEE Journal on Selected Areas in Communications.

[53]  W. Saad,et al.  Performance Optimization for Semantic Communications: An Attention-based Learning Approach , 2021, 2021 IEEE Global Communications Conference (GLOBECOM).

[54]  Xiaoming Tao,et al.  Deep Learning-Based Image Semantic Coding for Semantic Communications , 2021, 2021 IEEE Global Communications Conference (GLOBECOM).

[55]  Deniz Gündüz,et al.  DeepWiVe: Deep-Learning-Aided Wireless Video Transmission , 2021, IEEE Journal on Selected Areas in Communications.

[56]  W. Saad,et al.  Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless Cellular Networks , 2021, ICC 2022 - IEEE International Conference on Communications.

[57]  M. Debbah,et al.  Common Language for Goal-Oriented Semantic Communications: A Curriculum Learning Framework , 2021, ICC 2022 - IEEE International Conference on Communications.

[58]  Federico Chiariotti,et al.  Internet of Things (IoT) Connectivity in 6G: An Interplay of Time, Space, Intelligence, and Value , 2021, ArXiv.

[59]  Guna Sekhar Sajja,et al.  Systematic review of smart health monitoring using deep learning and Artificial intelligence , 2021, Neuroscience Informatics.

[60]  Bin He,et al.  Blockchain-Enhanced Spatiotemporal Data Aggregation for UAV-Assisted Wireless Sensor Networks , 2021, IEEE Transactions on Industrial Informatics.

[61]  Xianfu Chen,et al.  Rethinking Modern Communication from Semantic Coding to Semantic Communication , 2021, IEEE Wireless Communications.

[62]  Emilio Calvanese Strinati,et al.  Learning Semantics: An Opportunity for Effective 6G Communications , 2021, 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC).

[63]  Hun-Seok Kim,et al.  Deep Joint Source-Channel Coding for Wireless Image Transmission with Adaptive Rate Control , 2021, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[64]  Mohsen Guizani,et al.  A survey on 5G/6G, AI, and Robotics , 2021, Comput. Electr. Eng..

[65]  Petar Popovski,et al.  What is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence , 2021, J. Commun. Inf. Networks.

[66]  Kim-Kwang Raymond Choo,et al.  Edge Computing and Deep Learning Enabled Secure Multitier Network for Internet of Vehicles , 2021, IEEE Internet of Things Journal.

[67]  Caili Guo,et al.  Semantic Communications With AI Tasks , 2021, ArXiv.

[68]  W. Saad,et al.  Federated Learning for Audio Semantic Communication , 2021, Frontiers in Communications and Networks.

[69]  Yuyi Mao,et al.  Task-Oriented Communication for Multidevice Cooperative Edge Inference , 2021, IEEE Transactions on Wireless Communications.

[70]  Xianfu Chen,et al.  Reinforcement Learning-powered Semantic Communication via Semantic Similarity , 2021, ArXiv.

[71]  R. Timofte,et al.  Learning Context-Based Nonlocal Entropy Modeling for Image Compression , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[72]  Zhifeng Zhao,et al.  Semantic Communication With Adaptive Universal Transformer , 2021, IEEE Wireless Communications Letters.

[73]  Huiqiang Xie,et al.  Task-Oriented Multi-User Semantic Communications for VQA , 2021, IEEE Wireless Communications Letters.

[74]  M. Kountouris,et al.  Goal-Oriented Communication For Real-Time Tracking In Autonomous Systems , 2021, 2021 IEEE International Conference on Autonomous Systems (ICAS).

[75]  Joan S. Pujol Roig,et al.  Effective Communications: A Joint Learning and Communication Framework for Multi-Agent Reinforcement Learning Over Noisy Channels , 2021, IEEE Journal on Selected Areas in Communications.

[76]  I. Stefaniak,et al.  Detecting formal thought disorder by deep contextualized word representations , 2021, Psychiatry Research.

[77]  Quan Yuan,et al.  GraphComm: Efficient Graph Convolutional Communication for Multiagent Cooperation , 2021, IEEE Internet of Things Journal.

[78]  Gordon Owusu Boateng,et al.  Multi-Agent DRL for Task Offloading and Resource Allocation in Multi-UAV Enabled IoT Edge Network , 2021, IEEE Transactions on Network and Service Management.

[79]  Alison Q. O'Neil,et al.  Survey: Leakage and Privacy at Inference Time , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Geoffrey Y. Li,et al.  Deep Source-Channel Coding for Sentence Semantic Transmission With HARQ , 2021, IEEE Transactions on Communications.

[81]  Mehdi Bennis,et al.  Attention-based Reinforcement Learning for Real-Time UAV Semantic Communication , 2021, 2021 17th International Symposium on Wireless Communication Systems (ISWCS).

[82]  A. Wiesel,et al.  Conditional Frechet Inception Distance , 2021, ArXiv.

[83]  K. Johansson,et al.  Semantic Communications in Networked Systems: A Data Significance Perspective , 2021, IEEE Network.

[84]  Hideaki Kimata,et al.  GAN-Based Image Compression Using Mutual Information for Optimizing Subjective Image Similarity , 2021, IEICE Trans. Inf. Syst..

[85]  Zhijin Qin,et al.  Semantic Communication Systems for Speech Transmission , 2021, IEEE Journal on Selected Areas in Communications.

[86]  S. Chatzinotas,et al.  Task-Oriented Communication Design in Cyber-Physical Systems: A Survey on Theory and Applications , 2021, IEEE Access.

[87]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[88]  Tie Qiu,et al.  Mobile Edge Computing Enabled 5G Health Monitoring for Internet of Medical Things: A Decentralized Game Theoretic Approach , 2021, IEEE Journal on Selected Areas in Communications.

[89]  Guangming Shi,et al.  A new communication paradigm: from bit accuracy to semantic fidelity , 2021, ArXiv.

[90]  Shuguang Cui,et al.  Federated Learning for 6G: Applications, Challenges, and Opportunities , 2021, Engineering.

[91]  Bin Han,et al.  The Road Towards 6G: A Comprehensive Survey , 2021, IEEE Open Journal of the Communications Society.

[92]  A. Ephremides,et al.  The Age of Incorrect Information: An Enabler of Semantics-Empowered Communication , 2020, IEEE Transactions on Wireless Communications.

[93]  Yunsong Li,et al.  Spectral-Spatial Feature Partitioned Extraction Based on CNN for Multispectral Image Compression , 2020, Remote. Sens..

[94]  Xi Wang,et al.  A survey on the development status and application prospects of knowledge graph in smart grids , 2020, IET Generation, Transmission & Distribution.

[95]  B. Ai,et al.  Wireless Image Transmission Using Deep Source Channel Coding With Attention Modules , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[96]  Bo Liu,et al.  When Machine Learning Meets Privacy , 2020, ACM Comput. Surv..

[97]  Sergio Barbarossa,et al.  6G Networks: Beyond Shannon Towards Semantic and Goal-Oriented Communications , 2020, Comput. Networks.

[98]  Jure Leskovec,et al.  Graph Information Bottleneck , 2020, NeurIPS.

[99]  Zhiting Hu,et al.  A Survey of Knowledge-enhanced Text Generation , 2020, ACM Comput. Surv..

[100]  Deniz Gündüz,et al.  Bandwidth-Agile Image Transmission With Deep Joint Source-Channel Coding , 2020, IEEE Transactions on Wireless Communications.

[101]  Raquel Urtasun,et al.  V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction , 2020, ECCV.

[102]  Marios Kountouris,et al.  Semantics-Empowered Communication for Networked Intelligent Systems , 2020, IEEE Communications Magazine.

[103]  Deniz Gündüz,et al.  Wireless Image Retrieval at the Edge , 2020, IEEE Journal on Selected Areas in Communications.

[104]  Zhijin Qin,et al.  A Lite Distributed Semantic Communication System for Internet of Things , 2020, IEEE Journal on Selected Areas in Communications.

[105]  Víctor P. Gil Jiménez,et al.  MmWave massive MIMO small cells for 5G and beyond mobile networks: An overview , 2020, 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP).

[106]  Roy D. Yates,et al.  Age of Information: An Introduction and Survey , 2020, IEEE Journal on Selected Areas in Communications.

[107]  Zhe Gan,et al.  CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information , 2020, ICML.

[108]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[109]  Geoffrey Ye Li,et al.  Deep Learning Enabled Semantic Communication Systems , 2020, IEEE Transactions on Signal Processing.

[110]  Mohamed Elhoseny,et al.  Deep learning with LSTM based distributed data mining model for energy efficient wireless sensor networks , 2020, Phys. Commun..

[111]  Yen-Cheng Liu,et al.  When2com: Multi-Agent Perception via Communication Graph Grouping , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[112]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[113]  David Burth Kurka,et al.  Deep Joint Source-Channel Coding of Images with Feedback , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[114]  Gokhan Pekcan,et al.  Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review , 2020, Sensors.

[115]  Geoffrey Ye Li,et al.  Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems , 2020, IEEE Communications Letters.

[116]  Abhijith Punnappurath,et al.  Learning Raw Image Reconstruction-Aware Deep Image Compressors , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Jiashi Feng,et al.  Strip Pooling: Rethinking Spatial Pooling for Scene Parsing , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Yen-Cheng Liu,et al.  Who2com: Collaborative Perception via Learnable Handshake Communication , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[119]  Matthew E. Taylor,et al.  Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey , 2020, J. Mach. Learn. Res..

[120]  Weitong Chen,et al.  Deep learning for heterogeneous medical data analysis , 2020, World Wide Web.

[121]  Joonhyuk Kang,et al.  End-to-End Fast Training of Communication Links Without a Channel Model via Online Meta-Learning , 2020, 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[122]  Yan Zhang,et al.  Deep Reinforcement Learning for Fresh Data Collection in UAV-assisted IoT Networks , 2020, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[123]  Xiaojun Chen,et al.  A review: Knowledge reasoning over knowledge graph , 2020, Expert Syst. Appl..

[124]  Shi Jin,et al.  Model-Driven Deep Learning for MIMO Detection , 2020, IEEE Transactions on Signal Processing.

[125]  Michael I. Jordan,et al.  Decision-Making with Auto-Encoding Variational Bayes , 2020, NeurIPS.

[126]  Philip S. Yu,et al.  A Survey on Knowledge Graphs: Representation, Acquisition, and Applications , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[127]  Victor Talpaert,et al.  Deep Reinforcement Learning for Autonomous Driving: A Survey , 2020, IEEE Transactions on Intelligent Transportation Systems.

[128]  Zhu Han,et al.  Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep Reinforcement Learning Approach , 2020, IEEE Transactions on Intelligent Transportation Systems.

[129]  Sameer Qazi,et al.  Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios , 2020, IEEE Access.

[130]  Karl Henrik Johansson,et al.  Scheduling networked state estimators based on Value of Information , 2019, Autom..

[131]  Branka Vucetic,et al.  Real-Time Wireless Networked Control Systems with Coding-Free Data Transmission , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[132]  Khaled Ben Letaief,et al.  Age-Based Utility Maximization for Wireless Powered Networks: A Stackelberg Game Approach , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[133]  Deniz Gündüz,et al.  Deep Joint Source-Channel Coding for Wireless Image Retrieval , 2019, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[134]  Wei Yang Bryan Lim,et al.  Federated Learning in Mobile Edge Networks: A Comprehensive Survey , 2019, IEEE Communications Surveys & Tutorials.

[135]  Erich Elsen,et al.  High Fidelity Speech Synthesis with Adversarial Networks , 2019, ICLR.

[136]  M. A. Rahman,et al.  The Potential Short- and Long-Term Disruptions and Transformative Impacts of 5G and Beyond Wireless Networks: Lessons Learnt From the Development of a 5G Testbed Environment , 2019, IEEE Access.

[137]  Chengqing Li,et al.  Multi-Channel Deep Networks for Block-Based Image Compressive Sensing , 2019, IEEE Transactions on Multimedia.

[138]  Branka Vucetic,et al.  Wireless Networked Control Systems With Coding-Free Data Transmission for Industrial IoT , 2019, IEEE Internet of Things Journal.

[139]  Anthony Ephremides,et al.  The Age of Incorrect Information: A New Performance Metric for Status Updates , 2019, IEEE/ACM Transactions on Networking.

[140]  Pingyi Fan,et al.  Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations in Mobile-Edge Computing System , 2019, IEEE Internet of Things Journal.

[141]  Xianfu Chen,et al.  GAN-Based Deep Distributional Reinforcement Learning for Resource Management in Network Slicing , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[142]  Walid Saad,et al.  Deep Reinforcement Learning for Minimizing Age-of-Information in UAV-Assisted Networks , 2019, 2019 IEEE Global Communications Conference (GLOBECOM).

[143]  Honggang Zhang,et al.  Internet of Intelligence: The Collective Advantage for Advancing Communications and Intelligence , 2019, 1905.00719.

[144]  Mirella Lapata,et al.  Text Generation from Knowledge Graphs with Graph Transformers , 2019, NAACL.

[145]  Wolfgang Kellerer,et al.  Age-of-information vs. value-of-information scheduling for cellular networked control systems , 2019, ICCPS.

[146]  Mohammad Shorif Uddin,et al.  Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study , 2019, Journal of Computer and Communications.

[147]  Jakob Hoydis,et al.  Model-Free Training of End-to-End Communication Systems , 2018, IEEE Journal on Selected Areas in Communications.

[148]  Geoffrey Ye Li,et al.  ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers , 2018, IEEE Communications Letters.

[149]  David Burth Kurka,et al.  Deep Joint Source-Channel Coding for Wireless Image Transmission , 2018, IEEE Transactions on Cognitive Communications and Networking.

[150]  Vishnu Raj,et al.  Backpropagating Through the Air: Deep Learning at Physical Layer Without Channel Models , 2018, IEEE Communications Letters.

[151]  Biing-Hwang Juang,et al.  Deep Learning in Physical Layer Communications , 2018, IEEE Wireless Communications.

[152]  Inaki Estella Aguerri,et al.  Distributed Variational Representation Learning , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[153]  Lukasz Kaiser,et al.  Universal Transformers , 2018, ICLR.

[154]  Biing-Hwang Juang,et al.  Channel Agnostic End-to-End Learning Based Communication Systems with Conditional GAN , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[155]  Bin Yao,et al.  ACV-tree: A New Method for Sentence Similarity Modeling , 2018, IJCAI.

[156]  Zongqing Lu,et al.  Learning Attentional Communication for Multi-Agent Cooperation , 2018, NeurIPS.

[157]  Xianfu Chen,et al.  Deep Reinforcement Learning for Resource Management in Network Slicing , 2018, IEEE Access.

[158]  Timothy J. O'Shea,et al.  Approximating the Void: Learning Stochastic Channel Models from Observation with Variational Generative Adversarial Networks , 2018, 2019 International Conference on Computing, Networking and Communications (ICNC).

[159]  Timothy J. O'Shea,et al.  Learning a Physical Layer Scheme for the MIMO Interference Channel , 2018, 2018 IEEE International Conference on Communications (ICC).

[160]  Jiro Katto,et al.  Deep Convolutional AutoEncoder-based Lossy Image Compression , 2018, 2018 Picture Coding Symposium (PCS).

[161]  L. Gool,et al.  Generative Adversarial Networks for Extreme Learned Image Compression , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[162]  Jakob Hoydis,et al.  End-to-End Learning of Communications Systems Without a Channel Model , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[163]  Shimon Whiteson,et al.  QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning , 2018, ICML.

[164]  Andrea J. Goldsmith,et al.  Deep Learning for Joint Source-Channel Coding of Text , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[165]  Arthur Gretton,et al.  Demystifying MMD GANs , 2018, ICLR.

[166]  Shi Jin,et al.  Deep Learning for Massive MIMO CSI Feedback , 2017, IEEE Wireless Communications Letters.

[167]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[168]  Timothy J. O'Shea,et al.  Deep Learning Based MIMO Communications , 2017, ArXiv.

[169]  Wolfgang Utschick,et al.  Learning the MMSE Channel Estimator , 2017, IEEE Transactions on Signal Processing.

[170]  Stephan ten Brink,et al.  Deep Learning Based Communication Over the Air , 2017, IEEE Journal of Selected Topics in Signal Processing.

[171]  Sepp Hochreiter,et al.  GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium , 2017, NIPS.

[172]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[173]  Yixin Zhong,et al.  A theory of semantic information , 2017, China Communications.

[174]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[175]  D. Zighed,et al.  Sentence similarity based on semantic kernels for intelligent text retrieval , 2017, Journal of Intelligent Information Systems.

[176]  Lubomir D. Bourdev,et al.  Real-Time Adaptive Image Compression , 2017, ICML.

[177]  Sofie Pollin,et al.  Ultra Reliable UAV Communication Using Altitude and Cooperation Diversity , 2017, IEEE Transactions on Communications.

[178]  Yan Chen,et al.  Intelligent 5G: When Cellular Networks Meet Artificial Intelligence , 2017, IEEE Wireless Communications.

[179]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[180]  Lucas Theis,et al.  Lossy Image Compression with Compressive Autoencoders , 2017, ICLR.

[181]  Jakob Hoydis,et al.  An Introduction to Deep Learning for the Physical Layer , 2017, IEEE Transactions on Cognitive Communications and Networking.

[182]  James A. Storer,et al.  Semantic Perceptual Image Compression Using Deep Convolution Networks , 2016, 2017 Data Compression Conference (DCC).

[183]  Li Fei-Fei,et al.  CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[184]  Siqi Liu,et al.  Improved Image Captioning via Policy Gradient optimization of SPIDEr , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[185]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[186]  David Minnen,et al.  Full Resolution Image Compression with Recurrent Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[187]  Alex Graves,et al.  Adaptive Computation Time for Recurrent Neural Networks , 2016, ArXiv.

[188]  Jun Zhao,et al.  Knowledge Graph Completion with Adaptive Sparse Transfer Matrix , 2016, AAAI.

[189]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[190]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[191]  Valero Laparra,et al.  Density Modeling of Images using a Generalized Normalization Transformation , 2015, ICLR.

[192]  Yu Hao,et al.  TransG : A Generative Mixture Model for Knowledge Graph Embedding , 2015, ArXiv.

[193]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[194]  Anxiao Jiang,et al.  Error correction through language processing , 2015, 2015 IEEE Information Theory Workshop (ITW).

[195]  Fumiyuki Adachi,et al.  The Application of MIMO to Non-Orthogonal Multiple Access , 2015, IEEE Transactions on Wireless Communications.

[196]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[197]  M. S. Lawton Hangzhou , 2014, Nature.

[198]  C. Lawrence Zitnick,et al.  CIDEr: Consensus-based image description evaluation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[199]  Trevor Darrell,et al.  Fully convolutional networks for semantic segmentation , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[200]  Aaron C. Courville,et al.  Generative Adversarial Nets , 2014, NIPS.

[201]  Marian Codreanu,et al.  Age of information with packet management , 2014, 2014 IEEE International Symposium on Information Theory.

[202]  Aylin Yener,et al.  Semantic index assignment , 2014, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS).

[203]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[204]  David Ellerman,et al.  An Introduction to Logical Entropy and its Relation to Shannon Entropy , 2013, Int. J. Semantic Comput..

[205]  W. J. Baker,et al.  A History of the Marconi Company 1874-1965 , 2013 .

[206]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[207]  Xianfu Chen,et al.  TACT: A Transfer Actor-Critic Learning Framework for Energy Saving in Cellular Radio Access Networks , 2012, IEEE Transactions on Wireless Communications.

[208]  Oded Goldreich,et al.  A theory of goal-oriented communication , 2012, JACM.

[209]  David Zhang,et al.  FSIM: A Feature Similarity Index for Image Quality Assessment , 2011, IEEE Transactions on Image Processing.

[210]  James A. Hendler,et al.  Towards a theory of semantic communication , 2011, 2011 IEEE Network Science Workshop.

[211]  Simon D'Alfonso,et al.  On Quantifying Semantic Information , 2011, Inf..

[212]  Chaofeng Li,et al.  Three-component weighted structural similarity index , 2009, Electronic Imaging.

[213]  Brendan A. Juba,et al.  Universal semantic communication I , 2008, Electron. Colloquium Comput. Complex..

[214]  Cristian S. Calude The mathematical theory of information , 2007 .

[215]  Rémi Gribonval,et al.  Performance measurement in blind audio source separation , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[216]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[217]  Luciano Floridi,et al.  Outline of a Theory of Strongly Semantic Information , 2004, Minds and Machines.

[218]  Shlomo Shamai,et al.  On joint source-channel coding for the Wyner-Ziv source and the Gel'fand-Pinsker channel , 2003, IEEE Trans. Inf. Theory.

[219]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[220]  Andries P. Hekstra,et al.  Perceptual evaluation of speech quality (PESQ)-a new method for speech quality assessment of telephone networks and codecs , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[221]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[222]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[223]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[224]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[225]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[226]  Joseph M. Francos,et al.  Estimation of amplitude and phase parameters of multicomponent signals , 1995, IEEE Trans. Signal Process..

[227]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[228]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[229]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[230]  J. Sobel,et al.  STRATEGIC INFORMATION TRANSMISSION , 1982 .

[231]  C. Chen,et al.  Stackelburg solution for two-person games with biased information patterns , 1972 .

[232]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[233]  Zhiquan Liu,et al.  Privacy-Preserving and Byzantine-Robust Federated Learning , 2024, IEEE Transactions on Dependable and Secure Computing.

[234]  Wei Yang Bryan Lim,et al.  Semantic Communications for 6G Future Internet: Fundamentals, Applications, and Challenges , 2022, ArXiv.

[235]  Fangfang Liu,et al.  Task-Oriented Semantic Communication Systems Based on Extended Rate-Distortion Theory , 2022, ArXiv.

[236]  Mehdi Bennis,et al.  Semantics-Native Communication with Contextual Reasoning , 2021, ArXiv.

[237]  Yangchao Huang,et al.  Energy Efficiency Optimization of Cognitive UAV-Assisted Edge Communication for Semantic Internet of Things , 2021, Wirel. Commun. Mob. Comput..

[238]  Rose Qingyang Hu,et al.  Challenges and Solutions for Cellular Based V2X Communications , 2021, IEEE Communications Surveys & Tutorials.

[239]  Yulei Wu,et al.  A Comprehensive Survey , 2020, Accountability and Privacy in Network Security.

[240]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[241]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[242]  Alexander A. Alemi,et al.  Deep Variational Information Bottleneck , 2017, ICLR.

[243]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[244]  Nando de Freitas,et al.  Learning to Perform Physics Experiments via Deep Reinforcement Learning , 2016, ICLR.

[245]  Miodrag Raskovic,et al.  Probability Logics , 2016, Springer International Publishing.

[246]  Weiming Zhang,et al.  Semantic image compression based on data hiding , 2015, IET Image Process..

[247]  Philipos C. Loizou,et al.  Speech Quality Assessment , 2011, Multimedia Analysis, Processing and Communications.

[248]  Claude E. Shannon,et al.  Recent Contributions to The Mathematical Theory of Communication , 2009 .

[249]  Patrick F. Reidy An Introduction to Latent Semantic Analysis , 2009 .

[250]  R. P. Suri,et al.  Introduction to Prolog , 2007 .

[251]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[252]  Majid Rabbani,et al.  An overview of the JPEG 2000 still image compression standard , 2002, Signal Process. Image Commun..

[253]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[254]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[255]  Jaakko Hintikka,et al.  On Semantic Information , 1970 .

[256]  Rudolf Carnap,et al.  An outline of a theory of semantic information , 1952 .

[257]  C. K. Ogden,et al.  The meaning of meaning: A study of the influence of thought and of the science of symbolism , 1923 .