Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates

Abstract: This paper assesses the combined effect of field plot size and LiDAR density on the estimation of four forest structure attributes: volume, total biomass, basal area and canopy cover. A total of 21 different plot sizes were considered, obtained by decreasing the field measured plot radius value from 25 to 5 m with regular intervals of 1 m. LiDAR data densities were simulated by randomly removing LiDAR pulses until reaching nine different density values. In order to avoid influence of the digital terrain model spatial resolution, eight different resolutions were considered (from 0.25 to 2 m grid size) and tested. A set of per-plot LiDAR metrics was extracted for each parameter combination. Prediction models of forest attributes were defined using forward stepwise ordinary least-square regressions. Results show that the highest R 2 values are reached by combining large plot sizes and high LiDAR data density values. However, plot size has a greater effect than LiDAR point density. In general, minimum plot areas of 500–600 m

[1]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[2]  Ernest L. Hall,et al.  Texture Measures for Automatic Classification of Pulmonary Disease , 1972, IEEE Transactions on Computers.

[3]  M. Vastaranta,et al.  Predicting individual tree attributes from airborne laser point clouds based on the random forests technique , 2011 .

[4]  P. Gessler,et al.  Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data , 2006 .

[5]  Ross Nelson,et al.  Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR , 2007 .

[6]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[7]  P. Gessler,et al.  Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA , 2009 .

[8]  T. Hermosilla,et al.  EXTRACTED FROM IMAGERY AND LIDAR DATA FOR OBJECT-ORIENTED CLASSIFICATION OF FOREST AREAS , 2010 .

[9]  R. McRoberts,et al.  Remote sensing support for national forest inventories , 2007 .

[10]  L. A. Ruiza,et al.  Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area , 2015 .

[11]  Arko Lucieer,et al.  Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions , 2011 .

[12]  Txomin Hermosilla,et al.  Original papers: A feature extraction software tool for agricultural object-based image analysis , 2011 .

[13]  J. Holmgren,et al.  Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning , 2003, Forest Science.

[14]  Virpi Junttila,et al.  Sparse Bayesian Estimation of Forest Stand Characteristics from Airborne Laser Scanning , 2008 .

[15]  R. Ruiz-Peinado,et al.  Producción de biomasa y fijación de CO2 por los bosques españoles , 2011 .

[16]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[17]  Laura Chasmer,et al.  Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns , 2006 .

[18]  K. Lim,et al.  Predicting forest stand variables from LiDAR data in the Great Lakes St. Lawrence forest of Ontario , 2008 .

[19]  Liviu Theodor Ene,et al.  SIMULATING SAMPLING EFFICIENCY IN AIRBORNE LASER SCANNING BASED FOREST INVENTORY , 2007 .

[20]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[21]  E. Næsset,et al.  ASSESSING EFFECTS OF LASER POINT DENSITY ON BIOPHYSICAL STAND PROPERTIES DERIVED FROM AIRBORNE LASER SCANNER DATA IN MATURE FOREST , 2007 .

[22]  Erik Næsset,et al.  Mapping defoliation during a severe insect attack on Scots pine using airborne laser scanning , 2006 .

[23]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[24]  Terje Gobakken,et al.  Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce , 2010 .

[25]  Erik Næsset,et al.  Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data , 2007 .

[26]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[27]  L. Monika Moskal,et al.  Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR , 2011 .

[28]  Nicholas C. Coops,et al.  Assessment of forest structure with airborne LiDAR and the effects of platform altitude , 2006 .

[29]  N. Coops,et al.  Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR , 2007, Trees.

[30]  Thomas Hilker,et al.  Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[31]  P. Treitz,et al.  Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: an examination of scanning density , 2006 .

[32]  J. Hyyppä,et al.  Automatic detection of harvested trees and determination of forest growth using airborne laser scanning , 2004 .

[33]  E. Næsset,et al.  Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. , 2009 .

[34]  Carl Seielstad,et al.  Using Laser Altimetry-based Segmentation to Refine Automated Tree Identification in Managed Forests of the Black Hills, South Dakota , 2006 .

[35]  Johan E. S. Fransson,et al.  Effects on estimation accuracy of forest variables using different pulse density of laser data , 2007 .

[36]  Juha Hyyppä,et al.  Advances in Forest Inventory Using Airborne Laser Scanning , 2012, Remote. Sens..

[37]  Nicholas C. Coops,et al.  Simulation study for finding optimal lidar acquisition parameters for forest height retrieval , 2005 .

[38]  R. Valbuena,et al.  Influence of Global Navigation Satellite System errors in positioning inventory plots for tree-height distribution studies , 2011 .

[39]  A. Pekkarinen,et al.  Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data , 2004 .

[40]  Terje Gobakken,et al.  Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data , 2008 .

[41]  Virpi Junttila,et al.  Estimation of forest stand parameters from airborne laser scanning using calibrated plot databases. , 2010 .

[42]  Kevin Lim,et al.  LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada , 2012, Remote. Sens..

[43]  Marek K. Jakubowski,et al.  Tradeoffs between lidar pulse density and forest measurement accuracy , 2013 .

[44]  Z. J. Bortolot,et al.  Using Tree Clusters to Derive Forest Properties from Small Footprint Lidar Data , 2006 .

[45]  T. Weber,et al.  Use of LiDAR and supplemental data to estimate forest maturity in Charles County, MD, USA , 2009 .

[46]  Joanne C. White,et al.  A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach , 2013 .