Uncertain text entry on mobile devices

Users often struggle to enter text accurately on touchscreen keyboards. To address this, we present a flexible decoder for touchscreen text entry that combines probabilistic touch models with a language model. We investigate two different touch models. The first touch model is based on a Gaussian Process regression approach and implicitly models the inherent uncertainty of the touching process. The second touch model allows users to explicitly control the uncertainty via touch pressure. Using the first model we show that the character error rate can be reduced by up to 7% over a baseline method, and by up to 1.3% over a leading commercial keyboard. Using the second model we demonstrate that providing users with control over input certainty reduces the amount of text users have to correct manually and increases the text entry rate.

[1]  Sriram Subramanian,et al.  PressureText: pressure input for mobile phone text entry , 2009, CHI Extended Abstracts.

[2]  Niels Henze,et al.  Observational and experimental investigation of typing behaviour using virtual keyboards for mobile devices , 2012, CHI.

[3]  Roderick Murray-Smith,et al.  Focused and casual interactions: allowing users to vary their level of engagement , 2013, CHI.

[4]  Ravin Balakrishnan,et al.  Pressure widgets , 2004, CHI.

[5]  Per Ola Kristensson,et al.  Improving two-thumb text entry on touchscreen devices , 2013, CHI.

[6]  Tim Paek,et al.  Usability guided key-target resizing for soft keyboards , 2010, IUI '10.

[7]  Gregory D. Abowd,et al.  Exploring Continuous Pressure Input for Mobile Phones , 2006 .

[8]  Per Ola Kristensson,et al.  Asynchronous Multimodal Text Entry Using Speech and Gesture Keyboards , 2011, INTERSPEECH.

[9]  Jacob O. Wobbrock,et al.  WalkType: using accelerometer data to accomodate situational impairments in mobile touch screen text entry , 2012, CHI.

[10]  John Williamson,et al.  Continuous uncertain interaction , 2006 .

[11]  Scott E. Hudson,et al.  A framework for robust and flexible handling of inputs with uncertainty , 2010, UIST.

[12]  Paul C. Schutte,et al.  The H-Metaphor as a Guideline for Vehicle Automation and Interaction , 2005 .

[13]  Yvonne Rogers,et al.  Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs , 2005, INTERACT.

[14]  Per Ola Kristensson,et al.  Five Challenges for Intelligent Text Entry Methods , 2009, AI Mag..

[15]  Shumin Zhai,et al.  FFitts law: modeling finger touch with fitts' law , 2013, CHI.

[16]  Simon Rogers,et al.  FingerCloud: uncertainty and autonomy handover incapacitive sensing , 2010, CHI.

[17]  Per Ola Kristensson,et al.  A versatile dataset for text entry evaluations based on genuine mobile emails , 2011, Mobile HCI.

[18]  Shumin Zhai,et al.  Bayesian touch: a statistical criterion of target selection with finger touch , 2013, UIST.

[19]  Per Ola Kristensson,et al.  Performance comparisons of phrase sets and presentation styles for text entry evaluations , 2012, IUI '12.

[20]  Sriram Subramanian,et al.  Multi-layer interaction for digital tables , 2006, UIST.

[21]  Jan O. Borchers,et al.  TypeRight: a keyboard with tactile error prevention , 2009, CHI.

[22]  Joshua Goodman,et al.  Language modeling for soft keyboards , 2002, IUI '02.

[23]  Jun Rekimoto,et al.  Expressive typing: a new way to sense typing pressure and its applications , 2009, CHI Extended Abstracts.

[24]  Tim Paek,et al.  Text Text Revolution: A Game That Improves Text Entry on Mobile Touchscreen Keyboards , 2011, Pervasive.

[25]  Geehyuk Lee,et al.  Force gestures: augmenting touch screen gestures with normal and tangential forces , 2011, UIST.

[26]  Michael Rohs,et al.  Characteristics of pressure-based input for mobile devices , 2010, CHI.

[27]  Tao Chen,et al.  Creating a live, public short message service corpus: the NUS SMS corpus , 2011, Lang. Resour. Evaluation.

[28]  Stephen A. Brewster,et al.  Pressure-based text entry for mobile devices , 2009, Mobile HCI.

[29]  Shumin Zhai,et al.  Relaxing stylus typing precision by geometric pattern matching , 2005, IUI.

[30]  Alwin de Rooij,et al.  One-press control: a tactile input method for pressure-sensitive computer keyboards , 2010, CHI Extended Abstracts.

[31]  Markus Löchtefeld,et al.  A user-specific machine learning approach for improving touch accuracy on mobile devices , 2012, UIST '12.

[32]  Min Zhang Proceedings of the ACL 2012 System Demonstrations , 2012 .

[33]  Kang Shi,et al.  PressureFish: a method to improve control of discrete pressure-based input , 2008, CHI.

[34]  I. Scott MacKenzie,et al.  Phrase sets for evaluating text entry techniques , 2003, CHI Extended Abstracts.

[35]  Timothy Baldwin,et al.  langid.py: An Off-the-shelf Language Identification Tool , 2012, ACL.

[36]  Patrick Baudisch,et al.  The generalized perceived input point model and how to double touch accuracy by extracting fingerprints , 2010, CHI.

[37]  Shumin Zhai,et al.  SHARK2: a large vocabulary shorthand writing system for pen-based computers , 2004, UIST '04.

[38]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.