Phase Transitions in Possible Dynamics of Cellular and Graph Automata Models of Sparsely Interconnected Multi-Agent Systems

We are interested in Communicating Finite State Machine (CFSM) based models of large-scale multi-agent systems and their emerging behavior. CFSM-based models are suitable for studying large ensembles of simple reactive agents, and collective dynamics of such ensembles. In this paper, we focus on the asymptotic dynamics of a class of the classical (finite) Cellular Automata (CA) and more general Network or Graph Automata (GA). We restrict our attention to CA and GA with Boolean-valued linear threshold functions as the node update rules, inspired by the well-known classical models of biological neurons. The linear threshold update rules on which we focus the most are the Boolean-valued functions that do not allow negative weights. We fully characterize the configuration spaces of such simple threshold CA, with a focus on the Majority update rule that results in the most interesting dynamics among the CA in this class. In particular, we show the combinatorics behind determining the total number of fixed point configurations for simple threshold CA. Even when the combinatorics is non-trivial, such as in the case of Majority update rule, the counting problems of interest are computationally tractable. We then discuss a stark contrast with respect to intractability of counting for the related classes of Boolean graph automata with the same restrictions on the node update rules. The GA with proven complex dynamics have only slightly more complex structures when it comes to (i) the underlying interconnection topologies (``cellular spaces'') and (ii) the diversity of the node update rules, i.e., whether all the nodes use the same update rule (as in the classical CA), or just two different rules from the given class are allowed.

[1]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[2]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[3]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[4]  S. Wolfram Twenty Problems in the Theory of Cellular Automata , 1985 .

[5]  Pekka Orponen,et al.  The Computational Power of Discrete Hopfield Nets with Hidden Units , 1996, Neural Computation.

[6]  E. Goles,et al.  Neural and Automata Networks: Dynamical Behavior and Applications , 2011 .

[7]  Jaakko Astola,et al.  Almost all monotone Boolean functions are polynomially learnable using membership queries , 2001, Inf. Process. Lett..

[8]  H. Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1991 .

[9]  C. Barrett,et al.  DICHOTOMY RESULTS FOR SEQUENTIAL DYNAMICAL SYSTEMS , 2000 .

[10]  Eric Rémila,et al.  Simulations of graph automata , 1998 .

[11]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[12]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[13]  Neil Davey,et al.  High capacity, small world associative memory models , 2006, Connect. Sci..

[14]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[15]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[18]  Bruno Martin,et al.  A Geometrical Hierarchy on Graphs via Cellular Automata , 2002, Fundam. Informaticae.

[19]  Gul A. Agha,et al.  PARALLEL vs . SEQUENTIAL THRESHOLD CELLULAR AUTOMATA : Comparison and Contrast , 2005 .

[20]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[21]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[22]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[23]  Predrag T. Tosic On Modeling and Analyzing Sparsely Networked Large-Scale Multi-agent Systems with Cellular and Graph Automata , 2006, International Conference on Computational Science.

[24]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[25]  L Glass,et al.  Counting and classifying attractors in high dimensional dynamical systems. , 1996, Journal of theoretical biology.

[26]  Predrag T. Tosic On counting fixed point configurations in star networks , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[27]  Zsuzsanna Róka One-way Cellular Automata on Cayley Graphs , 1993, FCT.

[28]  Mohamed G. Gouda,et al.  Proving liveness for networks of communicating finite state machines , 1986, TOPL.

[29]  Predrag T. Tosic On the complexity of enumerating possible dynamics of sparsely connected Boolean network automata with simple update rules , 2010, Automata.

[30]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[31]  Péter Gács,et al.  Deterministic computations whose history is independent of the order of asynchronous updating , 2001, ArXiv.

[32]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[33]  Eric Goles,et al.  Cellular automata, dynamical systems, and neural networks , 1994 .

[34]  Catherine S. Greenhill The complexity of counting colourings and independent sets in sparse graphs and hypergraphs , 2000, computational complexity.

[35]  Gul A. Agha,et al.  Computational Complexity of Predicting Some Properties of Large-Scale Agent Ensembles' Dynamical Evolution , 2005, EUMAS.

[36]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[37]  Avi Wigderson,et al.  Quadratic dynamical systems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[38]  Karel Culik,et al.  On Invertible Cellular Automata , 1987, Complex Syst..

[39]  Karel Culik,et al.  On the Limit Sets of Cellular Automata , 1989, SIAM J. Comput..

[40]  Pekka Orponen,et al.  Computing with Truly Asynchronous Threshold Logic Networks , 1997, Theor. Comput. Sci..

[41]  Predrag T. Tosic A perspective on the future of massively parallel computing: fine-grain vs. coarse-grain parallel models comparison & contrast , 2004, CF '04.

[42]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[43]  Bruno Durand A Random NP-Complete Problem for Inversion of 2D Cellular Automata , 1995, STACS.

[44]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[45]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[46]  Predrag T. Tosic On the Complexity of Counting Fixed Points and Gardens of Eden in Sequential Dynamical Systems on Planar Bipartite Graphs , 2006, Int. J. Found. Comput. Sci..

[47]  Gul A. Agha,et al.  Characterizing Configuration Spaces of Simple Threshold Cellular Automata , 2004, ACRI.

[48]  Reinhard Laubenbacher,et al.  Equivalence Relations on Finite Dynamical Systems , 2001, Adv. Appl. Math..

[49]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[50]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[51]  Gul Agha,et al.  Modeling and analysis of the collective dynamics of large-scale multi-agent systems , 2006 .

[52]  Pekka Orponen,et al.  On the Computational Power of Discrete Hopfield Nets , 1993, ICALP.

[53]  Predrag T. Tosic On Simple Models of Associative Memory: Network Density Is Not Required for Provably Complex Behavior , 2016, BIH.

[54]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[55]  Rocco A. Servedio,et al.  Monotone Boolean formulas can approximate monotone linear threshold functions , 2004, Discret. Appl. Math..

[56]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[57]  Pekka Orponen,et al.  Attraction Radii in Binary Hopfield Nets are Hard to Compute , 1993, Neural Computation.

[58]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[59]  R. Stearns,et al.  On Some Special Classes of Sequential Dynamical Systems , 2003 .

[60]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[61]  J. Stephen Judd,et al.  Neural network design and the complexity of learning , 1990, Neural network modeling and connectionism.

[62]  Santosh S. Venkatesh,et al.  The capacity of the Hopfield associative memory , 1987, IEEE Trans. Inf. Theory.

[63]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[64]  Klaus Sutner Classifying circular cellular automata , 1991 .

[65]  Harry B. Hunt,et al.  Reachability problems for sequential dynamical systems with threshold functions , 2003, Theor. Comput. Sci..

[66]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[67]  K. Culík,et al.  Computation theoretic aspects of cellular automata , 1990 .

[68]  Predrag T. Tosic Cellular automata for distributed computing: models of agent interaction and their implications , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[69]  Gustavo Deco,et al.  Finit Automata-Models for the Investigation of Dynamical Systems , 1997, Inf. Process. Lett..

[70]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[71]  Palash Sarkar,et al.  A brief history of cellular automata , 2000, CSUR.

[72]  Bruno Durand Inversion of 2D Cellular Automata: Some Complexity Results , 1994, Theor. Comput. Sci..

[73]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Gul A. Agha,et al.  On Computational Complexity of Counting Fixed Points in Symmetric Boolean Graph Automata , 2005, UC.

[75]  Eric Goles,et al.  Neural and automata networks , 1990 .

[76]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[77]  Predrag T. Tosic Cellular Automata Communication Models: Comparative Analysis of Parallel, Sequential and Asynchronous CA with Simple Threshold Update Rules , 2010, Int. J. Nat. Comput. Res..

[78]  Larry J. Stockmeyer On the combinational complexity of certain symmetric Boolean functions , 2005, Mathematical systems theory.

[79]  Johan Håstad,et al.  On the Size of Weights for Threshold Gates , 1994, SIAM J. Discret. Math..

[80]  Gul A. Agha,et al.  Concurrency vs. sequential interleavings in 1-D threshold cellular automata , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[81]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[82]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[83]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[84]  Marek Karpinski,et al.  Simulating Threshold Circuits by Majority Circuits , 1998, SIAM J. Comput..

[85]  Stephen Wolfram Cellular Automata And Complexity: Collected Papers , 2019 .

[86]  Doreen Schweizer,et al.  Cellular Automata And Complexity Collected Papers , 2016 .

[87]  Klaus Sutner,et al.  De Bruijn Graphs and Linear Cellular Automata , 1991, Complex Syst..

[88]  Alexander A. Razborov,et al.  Majority gates vs. general weighted threshold gates , 2005, computational complexity.

[89]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[90]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[91]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[92]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[93]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[94]  Pekka Orponen,et al.  On the Computational Complexity of Analyzing Hopfield Nets , 1989, Complex Syst..