Superconductivity at IBM - a Centennial Review: Part I - Superconducting Computer and Device Applications

The hundred-year anniversary of the discovery of superconductivity coincided with the centennial of the founding of IBM. For mor e than half its history, IBM has had significant research and development activities in superconductivity. These included the two largest industrial programs aimed at developing superconducting digital computers. They also included a fundamental physical science progr am o ut of which came the discovery of high-temperature superconductivity. Significant fundamental and applied superconductivity research continues today within IBM, including work on superconducting qubits, which may portend a third major superconducting computer development program. This article reviews IBM's applied superconductivity work in the context of the evolution of the IBM Corporation. A companion article reviews the physics and materials science research activities.

[1]  Antonio Corcoles,et al.  Protecting superconducting qubits from radiation , 2011 .

[2]  D. Awschalom,et al.  Design, fabrication, and performance of integrated miniature SQUID susceptometers , 1989 .

[3]  M.A. Washington,et al.  Nb Josephson tunnel junctions with thin layers of Al near the barrier , 1981, 1981 International Electron Devices Meeting.

[4]  Juri Matisoo,et al.  The Superconducting Computer , 1980 .

[5]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[6]  R. F. Broom,et al.  Josephson junctions of small area formed on the edges of niobium films , 1980 .

[7]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .

[8]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[9]  J. J. Kingston,et al.  Sensitive YBa2Cu3O7−x thin‐film magnetometer , 1991 .

[10]  S. Hasuo,et al.  A Josephson 4b Microprocessor , 1988, 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers.

[11]  Chandrasekhar,et al.  Magnetic response of a single, isolated gold loop. , 1991, Physical review letters.

[12]  All-refractory Josephson logic circuits , 1981, 1981 International Electron Devices Meeting.

[13]  D. J. Herrell,et al.  Sub-100 ps experimental Josephson interferometer logic gates , 1978 .

[14]  Frank Tsui JSP - A Research Signal Processor in Josephson Technology , 1980, IBM J. Res. Dev..

[15]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[16]  Shuichi Nagasawa,et al.  570-ps 13-mW Josephson 1-kbit NDRO RAM , 1989 .

[17]  P. Petré,et al.  Father Son & Co - My Life at IBM and Beyond , 2009 .

[18]  J. Matisoo Overview of Josephson Technology Logic and Memory , 1980, IBM J. Res. Dev..

[19]  J. Kirtley Prospects for imaging magnetic nanoparticles using a scanning SQUID microscope , 2009 .

[20]  William J. Gallagher,et al.  Low-noise thin-film TlBaCaCuO dc SQUIDs operated at 77 K , 1989 .

[21]  William J. Gallagher,et al.  Josephson integrated circuit process for scientific applications , 1987 .

[22]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[23]  J. Clarke,et al.  A superconducting galvanometer employing Josephson tunnelling , 1966 .

[24]  M. Ketchen,et al.  Punchthrough in a three‐junction SQUID , 1982 .

[25]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[26]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[27]  W. H. Mallison,et al.  Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities , 1993 .

[28]  T. Fulton,et al.  Lifetime of the zero-voltage state in Josephson tunnel junctions , 1974 .

[29]  Thermally induced vortex‐to‐vortex transitions in a superconducting quantum interference device , 1982 .

[30]  M.B. Ketchen,et al.  A Josephson technology system level experiment , 1981, IEEE Electron Device Letters.

[31]  R. R. Seeber,et al.  Structure of a cryogenic associative processor , 1964 .

[32]  Philip W. Anderson,et al.  PROBABLE OBSERVATION OF THE JOSEPHSON SUPERCONDUCTING TUNNELING EFFECT , 1963 .

[33]  A. E. Brennemann,et al.  Delay times for switching in-line cryotrons , 1963 .

[34]  W. Chang,et al.  Numerical calculation of the inductances of a multi-superconductor transmission line system , 1981 .

[35]  David B. Tuckerman,et al.  A Josephson ultrahigh‐resolution sampling system , 1980 .

[36]  Robert Benjamin Laibowitz,et al.  Quantum interference devices made from superconducting oxide thin films , 1987 .

[37]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[38]  R. Laibowitz,et al.  Josephson Junctions with Nb/Al Composite Electrodes , 1972 .

[39]  W. H. Mallison,et al.  Dependence of critical current density on oxygen exposure in Nb-AlO/sub x/-Nb tunnel junctions , 1995, IEEE Transactions on Applied Superconductivity.

[40]  D. Mccumber Effect of ac Impedance on dc Voltage‐Current Characteristics of Superconductor Weak‐Link Junctions , 1968 .

[41]  Chi,et al.  Flux limit of cosmic-ray magnetic monopoles from a fully coincident superconducting induction detector. , 1985, Physical review letters.

[42]  Joseph C. L. Logue From Vacuum Tubes to Very Large Scale Integration: A Personal Memoir , 1998, IEEE Ann. Hist. Comput..

[43]  Mark B. Ketchen,et al.  Josephson cross‐sectional model experiment , 1985 .

[44]  William J. Gallagher,et al.  Sub‐μm, planarized, Nb‐AlOx‐Nb Josephson process for 125 mm wafers developed in partnership with Si technology , 1991 .

[45]  Mark B. Ketchen,et al.  Ultra‐low‐noise tunnel junction dc SQUID with a tightly coupled planar input coil , 1982 .

[46]  D. Herrell,et al.  Regulated AC power for Josephson interferometer latching logic circuits , 1979 .

[47]  W. C. Stewart,et al.  CURRENT‐VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTIONS , 1968 .

[48]  R. Voss,et al.  An ultra‐low‐noise tunnel junction dc SQUID , 1979 .

[49]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[50]  A L Robinson IBM Drops Superconducting Computer Project: Problems with a high-speed memory chip would delay a Josephson junction computer long enough for semiconductors to catch up. , 1983, Science.

[51]  V. Newhouse,et al.  Noise Analysis for Amplifiers with Superconducting Input , 1971 .

[52]  Rolf Landauer,et al.  Thermal activation in extremely underdamped Josephson-junction circuits , 1983 .

[53]  E. Harris Turn-on delay of Josephson interferometer logic devices , 1979 .

[54]  B. Batlogg,et al.  Cooperating on superconductivity , 1992, IEEE Spectrum.

[55]  C. J. Kircher,et al.  Fabrication Process for Josephson Integrated Circuits , 1980, IBM J. Res. Dev..

[56]  John Clarke,et al.  Tunnel junction dc SQUID: Fabrication, operation, and performance , 1976 .

[57]  T. R. Clem,et al.  High-T/sub c/ SQUID gradiometer for mobile magnetic anomaly detection , 2001 .

[58]  W. Anacker Computers: Computing at 4 degrees Kelvin: Superconducting technology and unconventional packaging herald an era of ultrafast, ultrareliable computers , 1979, IEEE Spectrum.

[59]  J. Matisoo,et al.  SUBNANOSECOND PAIR‐TUNNELING TO SINGLE‐PARTICLE TUNNELING TRANSITIONS IN JOSEPHSON JUNCTIONS , 1966 .

[60]  M. Ketchen,et al.  Measurements of the effects of asymmetry in an on-chip regulated power distribution system using a dual trace Josephson sampling oscilloscope , 1981 .

[61]  Koch,et al.  Thin superconducting oxide films. , 1987, Physical review. B, Condensed matter.

[62]  T. Duzer,et al.  Low-probability punchthrough in Josephson junctions , 1981 .

[63]  A. Kleinsasser,et al.  Degradation of superconducting tunnel junction characteristics with increasing barrier transparency , 1993 .

[64]  William J. Gallagher,et al.  Three SQUID gradiometer , 1993 .

[65]  C. J. Anderson Electrical properties of an inputoutput cable for Josephson applications , 1982 .

[66]  W. H. Henkels,et al.  Basic Design of a Josephson Technology Cache Memory , 1980, IBM J. Res. Dev..

[67]  Siyuan Ran,et al.  Fabrication of high quality, deep-submicron Nb/AlO/sub x//Nb Josephson junctions using chemical mechanical polishing , 1995, IEEE Transactions on Applied Superconductivity.

[68]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[69]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[70]  Ivar Giaever,et al.  Electron Tunneling Between Two Superconductors , 1960 .

[71]  Arnold,et al.  Observation of multiple Andreev reflections in superconducting tunnel junctions. , 1994, Physical review letters.

[72]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[73]  S. Basavaiah,et al.  Fabrication of experimental Josephson tunneling circuits , 1974 .

[74]  R. A. Webb,et al.  Principles and methods of low-frequency electric and magnetic measurements using an rf-biased point-contact superconducting device , 1972 .

[75]  I. Giaever,et al.  Energy gap in superconductors measured by electron tunneling. [Al-AlO-Pb] , 1960 .

[76]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[77]  William J. Gallagher,et al.  Microstructured magnetic tunnel junctions (invited) , 1997 .

[78]  T. R. Gheewala,et al.  Josephson logic circuits based on nonlinear current injection in interferometer devices , 1978 .

[79]  Shaw,et al.  Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7- delta. , 1994, Physical review letters.

[80]  W. Walter,et al.  Niobium oxide-barrier tunnel junction , 1980, IEEE Transactions on Electron Devices.

[81]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[82]  Alan V. Brown An Overview of Josephson Packaging , 1980, IBM J. Res. Dev..

[83]  D. Tang,et al.  Bipolar circuit scaling , 1979, 1979 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[84]  H. Hoenigschmid,et al.  A 16-Mb MRAM featuring bootstrapped write drivers , 2005, IEEE Journal of Solid-State Circuits.

[85]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[86]  Alexander V. Rylyakov,et al.  Superconductor digital frequency divider operating up to 750 GHz , 1998 .

[87]  W. Lee,et al.  Noise and hysteresis in flux‐locked TlBaCaCuO SQUIDs , 1989 .

[88]  R. Voss,et al.  Ultra low noise Nb DC SQUIDs , 1981 .

[89]  William J. Gallagher,et al.  Magnetic hysteresis in integrated low Tc SQUID gradiometers , 1991 .

[90]  Richard L. Garwin,et al.  An Analysis of the Operation of a Persistent-Supercurrent Memory Cell , 1957, IBM J. Res. Dev..

[91]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[92]  E. Harris,et al.  Punchthrough in Josephson logic devices , 1981 .

[93]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[94]  R. Dynes,et al.  Switching to zero voltage in Josephson tunnel junctions , 1971 .

[95]  D H Freedman A Clouded Future for IBM Research. , 1993, Science.

[96]  W. Anacker,et al.  Potential of superconductive josephson tunneling technology for ultrahigh performance memories and processors , 1969 .

[97]  D. Buck,et al.  The Cryotron-A Superconductive Computer Component , 1956, Proceedings of the IRE.

[98]  H. Hoenigschmid,et al.  A 16Mb MRAM featuring bootstrapped write drivers , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[99]  T. Venkatesan,et al.  Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material , 1987 .

[100]  David P. DiVincenzo,et al.  Quantum computing: An IBM perspective , 2011, IBM J. Res. Dev..

[101]  McGuire,et al.  Critical-current measurements in epitaxial films of YBa2Cu , 1987, Physical review letters.

[102]  R. Garwin,et al.  Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon , 1957 .

[103]  A. Robinson New superconductors for a supercomputer. , 1982, Science.

[104]  Gallagher,et al.  Magnetic manifestations of carrier confinement in quantum wells. , 1989, Physical review letters.

[105]  Shinya Hasuo,et al.  A subnanosecond clock Josephson 4-bit processor , 1990 .

[106]  Hirotaka Tamura,et al.  A 4K Josephson memory , 1989 .

[107]  Vittorio Foglietti,et al.  Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field , 1995 .

[108]  Arjen K. Lenstra,et al.  Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.

[109]  W. Gallagher,et al.  Multilevel YBaCuO flux transformers with high Tc SQUIDs: A prototype high Tc SQUID magnetometer working at 77 K , 1991 .

[110]  R. Voss,et al.  Niobium nanobridge dc SQUID , 1980 .

[111]  Christoph Becher,et al.  Quantum computing with trapped ions , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[112]  J. Schrieffer Theory of superconductivity , 1958 .

[113]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[114]  Sadeg M. Faris,et al.  Generation and measurement of ultrashort current pulses with Josephson devices , 1980 .

[115]  H. Huggins,et al.  High quality refractory Josephson tunnel junctions utilizing thin aluminum layers , 1983 .

[116]  John Lambe,et al.  QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING , 1964 .

[117]  T. R. Gheewala,et al.  Design of 2.5-Micrometer Josephson Current Injection Logic (CIL) , 1980, IBM J. Res. Dev..

[118]  Sampath Purushothaman,et al.  Packaging Technology for Josephson Integrated Circuits , 1982 .

[119]  L. Smith,et al.  Selective niobium anodization process for fabricating Josephson tunnel junctions , 1981 .

[120]  H. C. Jones,et al.  The Characteristics of Chip-to-Chip Signal Propagation in a Package Suitable for Superconducting Circuits , 1980, IBM J. Res. Dev..

[121]  Emerson W. Pugh,et al.  IBM's 360 and early 370 systems , 1991 .

[122]  J. Claassen Coupling considerations for SQUID devices , 1975 .

[123]  M. Kawasaki,et al.  Low noise YBa2Cu3O7−δ grain boundary junction dc SQUIDs , 1990 .

[124]  Mark B. Ketchen,et al.  Planar coupling scheme for ultra low noise DC SQUIDs , 1981 .