The relation between intuitionistic and classical modal logics

Intuitionistic propositional logicInt and its extensions, known as intermediate or superintuitionistic logics, in many respects can be regarded as just fragments of classical modal logics containingS4. The main aim of this paper is to construct a similar correspondence between intermediate logics augmented with modal operators—we call them intuitionistic modal logics—and classical polymodal logics We study the class of intuitionistic polymodal logics in which modal operators satisfy only the congruence rules and so may be treated as various sorts of □ and ◇.

[1]  E. Lemmon,et al.  Modal Logics Between S 4 and S 5 , 1959 .

[2]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[3]  Michael Dummett,et al.  Modal Logics Between S4 and S5 , 1967 .

[4]  Hiroakira Ono Some Results on the Intermediate Logics , 1972 .

[5]  L. Maksimova,et al.  A lattice of normal modal logics , 1974 .

[6]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[7]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[8]  W. Blok Varieties of interior algebras , 1976 .

[9]  G. Servi On modal logic with an intuitionistic base , 1977 .

[10]  D. Scott,et al.  Intensional Logic, preliminary draft of initial chapters by EJ Lemmon, July 1966, Nowadays available as An Introduction to Modal Logic (American Philosophical Quarterly Monograph No. 11) edited by K. Segerberg , 1977 .

[11]  H. Ono On Some Intuitionistic Modal Logics , 1977 .

[12]  Johan van Benthem,et al.  Canonical Modal Logics and Ultrafilter Extensions , 1979, J. Symb. Log..

[13]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[14]  K. Segerberg Classical propositional operators , 1982 .

[15]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[16]  K. Dosen,et al.  Models for normal intuitionistic modal logics , 1984 .

[17]  Kit Fine,et al.  Logics containing K4. Part I , 1974, Journal of Symbolic Logic.

[18]  K. Fine Logics containing K4. Part II , 1985, Journal of Symbolic Logic.

[19]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[20]  Michael Zakharyaschev,et al.  Canonical formulas for K4. Part I: Basic results , 1992, Journal of Symbolic Logic.

[21]  Michael Zakharyaschev,et al.  Modal companions of intermediate propositional logics , 1992, Stud Logica.

[22]  Fiora Pirri,et al.  A uniform tableau method for intuitionistic modal logics I , 1994, Stud Logica.

[23]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[24]  Marcus Kracht,et al.  Lattices of Modal Logics and Their Groups of Automorphisms , 1999, Ann. Pure Appl. Log..