Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes.

This report describes the design and synthesis of a series of alpha(V)beta(3) integrin-directed monomeric, dimeric and tetrameric cyclo[Arg-Gly-Asp-d-Phe-Lys] dendrimers using "click chemistry". It was found that the unprotected N-epsilon-azido derivative of cyclo[Arg-Gly-Asp-d-Phe-Lys] underwent a highly chemoselective conjugation to amino acid-based dendrimers bearing terminal alkynes using a microwave-assisted Cu(I)-catalyzed 1,3-dipolar cycloaddition. The alpha(V)beta(3) binding characteristics of the dendrimers were determined in vitro and their in vivoalpha(V)beta(3) targeting properties were assessed in nude mice with subcutaneously growing human SK-RC-52 tumors. The multivalent RGD-dendrimers were found to have enhanced affinity toward the alpha(V)beta(3) integrin receptor as compared to the monomeric derivative as determined in an in vitro binding assay. In case of the DOTA-conjugated (111)In-labeled RGD-dendrimers, it was found that the radiolabeled multimeric dendrimers showed specifically enhanced uptake in alpha(V)beta(3) integrin expressing tumors in vivo. These studies showed that the tetrameric RGD-dendrimer had better tumor targeting properties than its dimeric and monomeric congeners.

[1]  G. I. Tesser,et al.  The methylsulfonylethyloxycarbonyl group, a new and versatile amino protective function. , 2009, International journal of peptide and protein research.

[2]  O. Boerman,et al.  Synthesis and biological evaluation of potent a v h 3 -integrin receptor antagonists , 2006 .

[3]  D. Boturyn,et al.  Multivalent RGD synthetic peptides as potent αVβ3 integrin ligands , 2006 .

[4]  Sharon Bloch,et al.  Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. , 2006, Journal of medicinal chemistry.

[5]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[6]  Sanjiv S Gambhir,et al.  Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. , 2006, Nano letters.

[7]  D. Boturyn,et al.  Chemoselectively addressable template: a valuable tool for the engineering of molecular conjugates. , 2006, The Journal of organic chemistry.

[8]  E. Fan,et al.  Solid phase synthesis of peptidotriazoles with multiple cycles of triazole formation , 2006 .

[9]  H. Kessler,et al.  Benzylprotected aromatic phosphonic acids for anchoring peptides on titanium. , 2006, Bioorganic & medicinal chemistry letters.

[10]  Francis C Szoka,et al.  Designing dendrimers for biological applications , 2005, Nature Biotechnology.

[11]  H. Kessler,et al.  Molecular targeting with peptides or peptide-polymer conjugates: just a question of size? , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Thommey P. Thomas,et al.  Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates. , 2005, Chemical communications.

[13]  S. Goodman,et al.  Titanium Implant Materials with Improved Biocompatibility through Coating with Phosphonate‐Anchored Cyclic RGD Peptides , 2005, Chembiochem : a European journal of chemical biology.

[14]  Sanjiv S. Gambhir,et al.  Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice , 2005 .

[15]  S. Gambhir,et al.  microPET Imaging of Glioma Integrin αvβ3 Expression Using 64Cu-Labeled Tetrameric RGD Peptide , 2005 .

[16]  Arwin J. Brouwer,et al.  Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. , 2005, Chemical communications.

[17]  H. Ghandehari,et al.  Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  M. Merkx,et al.  Multivalent peptide and protein dendrimers using native chemical ligation. , 2005, Angewandte Chemie.

[19]  Arwin J. Brouwer,et al.  High‐Yielding Microwave‐Assisted Synthesis of Triazole‐Linked Glycodendrimers by Copper‐Catalyzed [3+2] Cycloaddition , 2005 .

[20]  Ew Bert Meijer,et al.  Solid-Phase Synthesis of a Cyclic NGR-Functionalized GdIIIDTPA Complex , 2005 .

[21]  Zhimin Shen,et al.  Synthesis, in vitro, and in vivo characterization of an integrin αvβ3-targeted molecular probe for optical imaging of tumor , 2005 .

[22]  E. W. Meijer,et al.  A supramolecular approach to multivalent target-specific MRI contrast agents for angiogenesis. , 2005, Chemical communications.

[23]  Britton Chance,et al.  Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Wei Wang,et al.  Probing for Integrin αvβ3 Binding of RGD Peptides Using Fluorescence Polarization , 2005 .

[25]  E. Giralt,et al.  Peptide and amide bond-containing dendrimers. , 2005, Chemical reviews.

[26]  Arwin J. Brouwer,et al.  Synthesis of Novel Dendrimeric Systems Containing NLO Ligands , 2005 .

[27]  N. Neamati,et al.  Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. , 2005, Journal of medicinal chemistry.

[28]  D. Reinhoudt,et al.  Multivalency in supramolecular chemistry and nanofabrication. , 2004, Organic & biomolecular chemistry.

[29]  W. Oyen,et al.  Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation. , 2004, Cancer biotherapy & radiopharmaceuticals.

[30]  R. Breinbauer,et al.  Azide–Alkyne Coupling: A Powerful Reaction for Bioconjugate Chemistry , 2003, Chembiochem : a European journal of chemical biology.

[31]  Horst Kessler,et al.  Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. , 2003, Chemistry.

[32]  K. Müllen,et al.  Peptide-functionalized polyphenylene dendrimers , 2003 .

[33]  W. Oyen,et al.  Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. , 2002, Cancer biotherapy & radiopharmaceuticals.

[34]  Milind Rajopadhye,et al.  Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. , 2002, Cancer research.

[35]  Horst Kessler,et al.  The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. , 2002, Angewandte Chemie.

[36]  R. Hynes A reevaluation of integrins as regulators of angiogenesis , 2002, Nature Medicine.

[37]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[38]  M. Bednarski,et al.  Tumor Regression by Targeted Gene Delivery to the Neovasculature , 2002, Science.

[39]  R. Liskamp,et al.  A convenient synthesis of azido peptides by post-assembly diazo transfer on the solid phase applicable to large peptides , 2002 .

[40]  Jean M. J. Fréchet,et al.  Dendrimers and supramolecular chemistry , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[42]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[43]  M. Rajopadhye,et al.  (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. , 2001, Bioconjugate chemistry.

[44]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[45]  Arwin J. Brouwer,et al.  Convergent Synthesis and Diversity of Amino Acid Based Dendrimers , 2001 .

[46]  J. Pelletier,et al.  Improved Solid-Phase Peptide Synthesis Method Utilizing α-Azide-Protected Amino Acids , 2001 .

[47]  M Schwaiger,et al.  Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[48]  X. Dai,et al.  An improved synthesis of a selective αvβ3-integrin antagonist cyclo(-RGDfK-) , 2000 .

[49]  Li Zhang,et al.  Ligand Binding to Integrins* , 2000, The Journal of Biological Chemistry.

[50]  Horst Kessler,et al.  Radiolabeled αvβ3 Integrin Antagonists: A New Class of Tracers for Tumor Targeting , 1999 .

[51]  G. Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[52]  R. Kramer,et al.  Spanning binding sites on allosteric proteins with polymer-linked ligand dimers , 1998, Nature.

[53]  William F. Westlin,et al.  A Peptidomimetic Antagonist of the Integrin αvβ3 Inhibits Leydig Cell Tumor Growth and the Development of Hypercalcemia of Malignancy , 1998 .

[54]  Horst Kessler,et al.  Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the αvβ3 Integrin for a New Cancer Therapy , 1997 .

[55]  C. E. Peishoff,et al.  Discovery of Potent Nonpeptide Vitronectin Receptor (αVβ3) Antagonists , 1997 .

[56]  Arwin J. Brouwer,et al.  Molecular Diversity of Novel Amino Acid Based Dendrimers , 1997 .

[57]  Arwin J. Brouwer,et al.  Synthesis of a novel amino acid based dendrimer , 1997 .

[58]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .

[59]  D. Cheresh,et al.  Integrin α v β 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels , 1994, Cell.

[60]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[61]  A. Varki Biological roles of oligosaccharides: all of the theories are correct , 1993, Glycobiology.

[62]  R. Timpl,et al.  Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. , 1992, European journal of biochemistry.

[63]  K. Rose,et al.  Construction of protein analogues by site-specific condensation of unprotected fragments. , 1992, Bioconjugate chemistry.

[64]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[65]  J. Tam,et al.  Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Tam,et al.  Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[67]  E. V. Arx,et al.  Das 4,4′-tetramethyldiamino-diphenylmethan reagens (TDM) , 1976 .

[68]  Klaas Nicolay,et al.  Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. , 2006, Nano letters.

[69]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[70]  Grietje Molema,et al.  Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. , 2002, Bioconjugate chemistry.

[71]  E. Grell,et al.  A new reagent for the cleavage of fully protected peptides synthesised on 2-chlorotrityl chloride resin , 1994 .