Learning the Structure of Mixed Graphical Models

We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parameterization of the model. Supplementary materials for this article are available online.

[1]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[2]  Stephen M. Samuels HAVE THE SAME SOLUTIONS , 2004 .

[3]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[4]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[5]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[6]  Graham J. Wills,et al.  Introduction to graphical modelling , 1995 .

[7]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[8]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[9]  Daphne Koller,et al.  Efficient Structure Learning of Markov Networks using L1-Regularization , 2006, NIPS.

[10]  Marc Teboulle,et al.  Gradient-based algorithms with applications to signal-recovery problems , 2010, Convex Optimization in Signal Processing and Communications.

[11]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[12]  Ali Jalali,et al.  On Learning Discrete Graphical Models using Group-Sparse Regularization , 2011, AISTATS.

[13]  Qiang Liu,et al.  Learning Scale Free Networks by Reweighted L1 regularization , 2011, AISTATS.

[14]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[15]  Pradeep Ravikumar,et al.  Graphical Models via Generalized Linear Models , 2012, NIPS.

[16]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[17]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[18]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[19]  Michael A. Saunders,et al.  Proximal Newton-type Methods for Minimizing Convex Objective Functions in Composite Form , 2012, NIPS 2012.

[20]  Thomas Hofmann,et al.  Efficient Structure Learning of Markov Networks using L1-Regularization , 2007 .

[21]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[22]  Mark W. Schmidt,et al.  Projected Newton-type methods in machine learning , 2011 .

[23]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[24]  Tianxi Li,et al.  High-Dimensional Mixed Graphical Models , 2013, 1304.2810.

[25]  J. Lafferty,et al.  High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.

[26]  Michael I. Jordan,et al.  An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators , 2008, ICML '08.

[27]  Trevor Hastie,et al.  Applications of the lasso and grouped lasso to the estimation of sparse graphical models , 2010 .

[28]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[29]  Jonathan E. Taylor,et al.  On model selection consistency of M-estimators with geometrically decomposable penalties , 2013, NIPS 2013.

[30]  Mark W. Schmidt,et al.  Structure learning in random fields for heart motion abnormality detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Eric P. Xing,et al.  A multivariate regression approach to association analysis of a quantitative trait network , 2008, Bioinform..

[32]  E. Levina,et al.  Joint Structure Estimation for Categorical Markov Networks , 2010 .

[33]  Adam J Rothman,et al.  Sparse Multivariate Regression With Covariance Estimation , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[34]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[35]  Robert Castelo,et al.  Learning mixed graphical models from data with p larger than n , 2011, UAI.

[36]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[37]  Robert Tibshirani,et al.  Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods , 2009, J. Mach. Learn. Res..

[38]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[39]  Qiang Liu,et al.  Distributed Parameter Estimation via Pseudo-likelihood , 2012, ICML.

[40]  Pradeep Ravikumar,et al.  Graphical models via univariate exponential family distributions , 2013, J. Mach. Learn. Res..

[41]  Alfred O. Hero,et al.  $l_{0}$ Sparse Inverse Covariance Estimation , 2014, IEEE Transactions on Signal Processing.