Modification of Mikhaylov Criterion for Neutral Time-Delay Systems

The main goal of the technical note is to extend the Mikhaylov criterion to the case of neutral time delay systems. The modification consists in determining the vertex angle that bounds the argument oscillations of the Mikhaylov hodograph at high frequency ranges. Utilizing the strong stability concept, the presented stability criterion is examined from the viewpoint of potential fragility with respect to arbitrarily small delay changes. To facilitate the more demanding argument assessment, the Mikhaylov hodograph is converted to PoincarEacute-like mapping.

[1]  C. Desoer,et al.  Global parametrization of feedback systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[2]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[3]  Vladimir L. Kharitonov,et al.  Lyapunov-Krasovskii functionals for scalar neutral type time delay equations , 2009, Syst. Control. Lett..

[4]  V. Kolmanovskii,et al.  Applied Theory of Functional Differential Equations , 1992 .

[5]  C. Desoer,et al.  Global parametrization of feedback systems with nonlinear plants , 1982 .

[6]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[7]  P. Zitek,et al.  Argument-increment based stability criterion for neutral time delay systems , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[8]  Wim Michiels,et al.  Stability impact of small delays in proportional–derivative state feedback , 2009 .

[9]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[10]  Denis Dochain,et al.  Sensitivity to Infinitesimal Delays in Neutral Equations , 2001, SIAM J. Control. Optim..

[11]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[12]  Pavel Zítek,et al.  Quasipolynomial mapping based rootfinder for analysis of time delay systems , 2003 .

[13]  Tomás Vyhlídal,et al.  An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type , 2005, Autom..

[14]  A. Hatley Mathematics in Science and Engineering , Volume 6: Differential- Difference Equations. Richard Bellman and Kenneth L. Cooke. Academic Press, New York and London. 462 pp. 114s. 6d. , 1963, The Journal of the Royal Aeronautical Society.

[15]  Henryk Górecki,et al.  Analysis and Synthesis of Time Delay Systems , 1989 .

[16]  J. Birge,et al.  A multicut algorithm for two-stage stochastic linear programs , 1988 .

[17]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[18]  Thom J. Hodgson,et al.  Supply chain planning: rolling horizon scheduling of multi-factory supply chains , 2003, WSC '03.

[19]  George B. Dantzig,et al.  Multi-stage stochastic linear programs for portfolio optimization , 1993, Ann. Oper. Res..

[20]  Dirk Roose,et al.  Limitations of a class of stabilization methods for delay systems , 2001, IEEE Trans. Autom. Control..

[21]  Henk Nijmeijer,et al.  Strong Stability of Neutral Equations with an Arbitrary Delay Dependency Structure , 2009, SIAM J. Control. Optim..

[22]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[23]  Jack K. Hale,et al.  On the zeros of exponential polynomials , 1980 .

[24]  Charles A. Desoer,et al.  Controller Design for Linear Multivariable Feedback Systems with Stable Plants, Using Optimization with Inequality Constraints , 1983 .

[25]  Chaitanya Swamy,et al.  Sampling-based approximation algorithms for multi-stage stochastic optimization , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[26]  R. Ravi,et al.  What About Wednesday? Approximation Algorithms for Multistage Stochastic Optimization , 2005, APPROX-RANDOM.

[27]  Xin-Jian Zhu,et al.  Stability analysis of neutral systems with mixed delays , 2008, Autom..

[28]  Jack K. Hale,et al.  Strong stabilization of neutral functional differential equations , 2002 .

[29]  Stephen P. Boyd,et al.  Linear controller design: limits of performance via convex optimization , 1990 .

[30]  Tomás Vyhlídal,et al.  Mapping Based Algorithm for Large-Scale Computation of Quasi-Polynomial Zeros , 2009, IEEE Transactions on Automatic Control.

[31]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..