Performance guarantees of jump neighborhoods on restricted related parallel machines

We study the performance of two popular jump neighborhoods on the classical scheduling problem of minimizing the makespan on related parallel machines under the additional restriction that jobs are only allowed to be scheduled on a subset of machines. In particular, we analyze the performance guarantee of local optima with respect to the jump and the lexicographical jump neighborhood.

[1]  Peter Brucker,et al.  Improving Local Search Heuristics for some Scheduling Problems. Part II , 1996, Discret. Appl. Math..

[2]  Tjark Vredeveld,et al.  Local search for multiprocessor scheduling: how many moves does it take to a local optimum? , 2003, Oper. Res. Lett..

[3]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[4]  Berthold Vöcking,et al.  Tight bounds for worst-case equilibria , 2002, SODA '02.

[5]  Martin Hoefer,et al.  Tradeoffs and Average-Case Equilibria in Selfish Routing , 2010, TOCT.

[6]  Chung-Lun Li,et al.  Scheduling parallel machines with inclusive processing set restrictions , 2008 .

[7]  Yossi Azar,et al.  Tradeoffs in worst-case equilibria , 2006, Theor. Comput. Sci..

[8]  Oscar H. Ibarra,et al.  Bounds for LPT Schedules on Uniform Processors , 1977, SIAM J. Comput..

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Chung-Lun Li,et al.  Scheduling unit-length jobs with machine eligibility restrictions , 2006, Eur. J. Oper. Res..

[11]  Lu-Wen Liao,et al.  Parallel machine scheduling with machine availability and eligibility constraints , 2008, Eur. J. Oper. Res..

[12]  Martin Gairing,et al.  Nashification and the Coordination Ratio for a Selfish Routing Game , 2003, ICALP.

[13]  Berthold Vöcking Algorithmic Game Theory: Selfish Load Balancing , 2007 .

[14]  Petra Schuurman,et al.  Performance Guarantees of Local Search for Multiprocessor Scheduling , 2007, INFORMS J. Comput..

[15]  Marios Mavronicolas,et al.  The Price of Anarchy for Restricted Parallel Links , 2006, Parallel Process. Lett..

[16]  Ellis Horowitz,et al.  A linear time approximation algorithm for multiprocessor scheduling , 1979 .

[17]  Chung-Lun Li,et al.  Scheduling with processing set restrictions: A survey , 2008 .

[18]  Paul G. Spirakis,et al.  Structure and complexity of extreme Nash equilibria , 2005, Theor. Comput. Sci..