Field comparison of conventional and new technology temperature logging systems

[1]  P. Gretener,et al.  On the thermal instability of large diameter wells; an observational report , 1967 .

[2]  W. H. Diment,et al.  THERMAL REGIME OF A LARGE DIAMETER BOREHOLE: INSTABILITY OF THE WATER COLUMN AND COMPARISON OF AIR‐ AND WATER‐FILLED CONDITIONS , 1967 .

[3]  A. Lachenbruch,et al.  Measurement of geothermal flux through poorly consolidated sediments , 1968 .

[4]  E. A. Sammel Convective Flow and its Effect on Temperature Logging in Small-Diameter Wells , 1968 .

[5]  David D. Blackwell,et al.  Heat flow in the united States , 1968 .

[6]  D. Blackwell,et al.  Heat flow and geothermal potential of Kansas , 1981 .

[7]  Tony Gogel Preliminary data from Arbuckle test wells, Miami, Douglas, Saline, and Labette counties, Kansas , 1981 .

[8]  David D. Blackwell,et al.  14. Experimental Methods in Continental Heat Flow , 1987 .

[9]  Eckart Hurtig,et al.  Fibre-optic temperature measurements in shallow boreholes: experimental application for fluid logging , 1994 .

[10]  P. Lysne,et al.  Design of a pressure/temperature logging system for geothermal applications , 1994 .

[11]  Ladislaus Rybach,et al.  High-resolution digital temperature logging in areas with significant convective heat transfer , 1995 .

[12]  K. Sakaguchi,et al.  Temperature profile monitoring in geothermal wells by distributed temperature sensing technique , 1995 .

[13]  Eckart Hurtig,et al.  Fibre optic temperature sensing : A new tool for temperature measurements in boreholes , 1996 .

[14]  D. Blackwell,et al.  Application of optical‐fiber temperature logging—An example in a sedimentary environment , 1997 .