Randomized Subspace Actions and Fusion Frames

A randomized subspace action algorithm is investigated for fusion frame signal recovery problems and for the problem of recovering a signal from projections onto random subspaces. It is noted that Kaczmarz bounds provide upper bounds on the algorithm’s error moments. The main question of which probability distributions on a random subspace lead to provably fast convergence is addressed. In particular, it is proved which distributions give minimal Kaczmarz bounds, and hence give best control on error moment upper bounds arising from Kaczmarz bounds. Uniqueness of the optimal distributions is also addressed.

[1]  S. Kaczmarz Approximate solution of systems of linear equations , 1993 .

[2]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[3]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[4]  Kristiaan Pelckmans,et al.  On the Randomized Kaczmarz Algorithm , 2014, IEEE Signal Processing Letters.

[5]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[6]  J. Benedetto,et al.  Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Transactions on Information Theory.

[7]  L. Grafakos Classical and modern Fourier analysis , 2003 .

[8]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[9]  Vivek K. Goyal,et al.  Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[10]  Vivek K Goyal,et al.  Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[11]  Shidong Li,et al.  Non-orthogonal Fusion Frames and the Sparsity of Fusion Frame Operators , 2010, 1012.1496.

[12]  T. Elfving Block-iterative methods for consistent and inconsistent linear equations , 1980 .

[13]  Bent Fuglede,et al.  On the theory of potentials in locally compact spaces , 1960 .

[14]  M. Ehler,et al.  Minimization of the probabilistic p-frame potential , 2010, 1101.0140.

[15]  Demetrio Stojanoff,et al.  The Structure of Minimizers of the Frame Potential on Fusion Frames , 2008, 0811.3159.

[16]  M. Asgari,et al.  FRAMES OF SUBSPACES AND APPROXIMATION OF THE INVERSE FRAME OPERATOR , 2007 .

[17]  Bernhard G. Bodmann,et al.  Random fusion frames are nearly equiangular and tight , 2013, 1303.5816.

[18]  A. Shiryaev,et al.  Probability (2nd ed.) , 1995, Technometrics.

[19]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[20]  Peter G. Casazza,et al.  Constructing tight fusion frames , 2011 .

[21]  D. Needell,et al.  Two-Subspace Projection Method for Coherent Overdetermined Systems , 2012, 1204.0279.

[22]  W. Rudin Real and complex analysis , 1968 .

[23]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[24]  Peter G. Casazza,et al.  Finite Frames: Theory and Applications , 2012 .

[25]  R. Vershynin,et al.  A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.

[26]  John J. Benedetto,et al.  Sigma-delta quantization and finite frames , 2004, ICASSP.

[27]  Deanna Needell,et al.  Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method , 2012, ArXiv.

[28]  Otto Frostman Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .

[29]  G. Björck,et al.  Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .

[30]  D. Needell Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.

[31]  Peter G. Casazza,et al.  Minimizing Fusion Frame Potential , 2009 .

[32]  Xuemei Chen,et al.  Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements , 2012 .

[33]  Peter Oswald,et al.  Stable space splittings and fusion frames , 2009, Optical Engineering + Applications.

[34]  David R. Larson,et al.  Wavelets, frames and operator theory : Focused Research Group Workshop on Wavelets, Frames and Operator Theory, January 15-21, 2003, University of Maryland, College Park, Maryland , 2004 .