Randomized Subspace Actions and Fusion Frames
暂无分享,去创建一个
[1] S. Kaczmarz. Approximate solution of systems of linear equations , 1993 .
[2] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[3] G. Pisier. ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .
[4] Kristiaan Pelckmans,et al. On the Randomized Kaczmarz Algorithm , 2014, IEEE Signal Processing Letters.
[5] P. Casazza,et al. Frames of subspaces , 2003, math/0311384.
[6] J. Benedetto,et al. Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Transactions on Information Theory.
[7] L. Grafakos. Classical and modern Fourier analysis , 2003 .
[8] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[9] Vivek K. Goyal,et al. Quantized frame expansions as source-channel codes for erasure channels , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).
[10] Vivek K Goyal,et al. Multiple description transform coding: robustness to erasures using tight frame expansions , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[11] Shidong Li,et al. Non-orthogonal Fusion Frames and the Sparsity of Fusion Frame Operators , 2010, 1012.1496.
[12] T. Elfving. Block-iterative methods for consistent and inconsistent linear equations , 1980 .
[13] Bent Fuglede,et al. On the theory of potentials in locally compact spaces , 1960 .
[14] M. Ehler,et al. Minimization of the probabilistic p-frame potential , 2010, 1101.0140.
[15] Demetrio Stojanoff,et al. The Structure of Minimizers of the Frame Potential on Fusion Frames , 2008, 0811.3159.
[16] M. Asgari,et al. FRAMES OF SUBSPACES AND APPROXIMATION OF THE INVERSE FRAME OPERATOR , 2007 .
[17] Bernhard G. Bodmann,et al. Random fusion frames are nearly equiangular and tight , 2013, 1303.5816.
[18] A. Shiryaev,et al. Probability (2nd ed.) , 1995, Technometrics.
[19] P. Casazza,et al. Fusion frames and distributed processing , 2006, math/0605374.
[20] Peter G. Casazza,et al. Constructing tight fusion frames , 2011 .
[21] D. Needell,et al. Two-Subspace Projection Method for Coherent Overdetermined Systems , 2012, 1204.0279.
[22] W. Rudin. Real and complex analysis , 1968 .
[23] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[24] Peter G. Casazza,et al. Finite Frames: Theory and Applications , 2012 .
[25] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[26] John J. Benedetto,et al. Sigma-delta quantization and finite frames , 2004, ICASSP.
[27] Deanna Needell,et al. Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method , 2012, ArXiv.
[28] Otto Frostman. Potentiel d'équilibre et capacité des ensembles : Avec quelques applications a la théorie des fonctions , 1935 .
[29] G. Björck,et al. Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .
[30] D. Needell. Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.
[31] Peter G. Casazza,et al. Minimizing Fusion Frame Potential , 2009 .
[32] Xuemei Chen,et al. Almost Sure Convergence of the Kaczmarz Algorithm with Random Measurements , 2012 .
[33] Peter Oswald,et al. Stable space splittings and fusion frames , 2009, Optical Engineering + Applications.
[34] David R. Larson,et al. Wavelets, frames and operator theory : Focused Research Group Workshop on Wavelets, Frames and Operator Theory, January 15-21, 2003, University of Maryland, College Park, Maryland , 2004 .