Using machine learning for discovery in synoptic survey imaging data
暂无分享,去创建一个
M. Wainwright | S. Negahban | J. Richards | J. Bloom | D. Poznanski | H. Brink | J. Rice
[1] O. N. Garcia,et al. Knowledge and Data Engineering: An Outlook , 1989 .
[2] C. V. Ramamoorthy,et al. Knowledge and Data Engineering , 1989, IEEE Trans. Knowl. Data Eng..
[3] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[4] F. Ochsenbein,et al. The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.
[5] Isabelle Guyon,et al. An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..
[6] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[7] David G. Lowe,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.
[8] S. Bailey,et al. How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging , 2006, 0705.0493.
[9] Achim Zeileis,et al. BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .
[10] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[11] Canada.,et al. Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.
[12] Oxford,et al. Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.
[13] Alexander S. Szalay,et al. RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .
[14] Qiang Yang,et al. A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.
[15] Chad M. Schafer,et al. Semi-supervised learning for photometric supernova classification★ , 2011, 1103.6034.
[16] P. Dubath,et al. Random forest automated supervised classification of Hipparcos periodic variable stars , 2011, 1101.2406.
[17] S. Aigrain,et al. A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.
[18] Pavlos Protopapas,et al. QSO Selection Algorithm Using Time Variability and Machine Learning: Selection of 1,620 QSO Candidates from MACHO LMC Database , 2011, 1101.3316.
[19] J. Richards,et al. ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.
[20] Pavlos Protopapas,et al. QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE , 2011 .
[21] Gérard Biau,et al. Analysis of a Random Forests Model , 2010, J. Mach. Learn. Res..
[22] Tamara Broderick,et al. RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP , 2011, 1112.3654.
[23] Adam A. Miller,et al. ACTIVE LEARNING TO OVERCOME SAMPLE SELECTION BIAS: APPLICATION TO PHOTOMETRIC VARIABLE STAR CLASSIFICATION , 2011, 1106.2832.
[24] E. O. Ofek,et al. Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era , 2011, 1106.5491.
[25] Ingo P. Waldmann,et al. OF “COCKTAIL PARTIES” AND EXOPLANETS , 2011, 1106.1989.