Insight on the effect of surface modification by carbon materials on the Ionic Liquid Electric Double Layer Charge Storage properties

Abstract Development of new and better performing energy storage devices rely on the use of innovative materials. The combination of nanostructured materials with high specific area, such as graphene, and conventional electrode materials such as Glassy Carbon (GC) and the use of the composite electrode in ionic liquids (IL) are considered to be a promising strategy for improved energy storage devices. Following our previous studies of electrochemical interfaces involving 1-butyl-3-methylimidazolium (tris(pentafluoroethyl) trifluorophosphate) ([C 4 MIM][FAP]) ionic liquid and Hg, Au, Pt and GC we extended the search for better electrochemical performance by preparing GC electrode surfaces modified with different carbon materials (reduced graphene oxide, reduced graphite oxide and graphite). Cyclic voltammetry of these electrode surfaces in [C 4 MIM][FAP] ionic liquid shows a 100 fold increase in the capacitive current of the composite electrode when compared with plain GC electrode.

[1]  Li Qiang,et al.  Preparation for Graphite Materials and Study on Electrochemical Degradation of Phenol by Graphite Cathodes , 2012 .

[2]  Oleg Borodin,et al.  Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. , 2010, Journal of the American Chemical Society.

[3]  D. I. Leikis,et al.  Investigation of the electric double layer in salt melts , 1964 .

[4]  R. Ruoff,et al.  From conception to realization: an historial account of graphene and some perspectives for its future. , 2010, Angewandte Chemie.

[5]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[6]  A. Kornyshev,et al.  Erratum: Double Layer in Ionic Liquids: Overscreening versus Crowding [Phys. Rev. Lett. 106, 046102 (2011)] , 2012 .

[7]  Q. Xue,et al.  Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets , 2012 .

[8]  T. Ohsaka,et al.  Measurements of Differential Capacitance at Mercury/Room-Temperature Ionic Liquids Interfaces , 2007 .

[9]  Zhonghan Hu,et al.  Graphene in ionic liquids: collective van der Waals interaction and hindrance of self-assembly pathway. , 2013, The journal of physical chemistry. B.

[10]  Renata Costa,et al.  Charge Storage on Ionic Liquid Electric Double Layer: The Role of the Electrode Material , 2015 .

[11]  A. Bourlinos,et al.  Synthesis, characterization and gas sorption properties of a molecularly-derived graphite oxide-like foam , 2007 .

[12]  Rui Qiao,et al.  Microstructure and Capacitance of the Electrical Double Layers at the Interface of Ionic Liquids and Planar Electrodes , 2009 .

[13]  D. Henderson,et al.  A modified Poisson-Boltzmann analysis of the capacitance behavior of the electric double layer at low temperatures. , 2005, The Journal of chemical physics.

[14]  S. Nguyen,et al.  Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. , 2010, Small.

[15]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[16]  Jiachen Zhang,et al.  Application of Artificial Immune System in Structural Health Monitoring , 2014 .

[17]  Renata Costa,et al.  Dicationic Ionic Liquid: Insight in the Electrical Double Layer Structure at mercury, glassy carbon and gold surfaces , 2014 .

[18]  R. Piner,et al.  Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity , 2010 .

[19]  D. Kolb,et al.  The purification of an ionic liquid , 2011 .

[20]  Jan-Kai Chang,et al.  A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. , 2014, ACS nano.

[21]  Renata Costa,et al.  The electrical double layer at the ionic liquid/Au and Pt electrode interface , 2014 .

[22]  David T. Limmer,et al.  The electric double layer has a life of its own , 2014, 1404.0343.

[23]  O. Borodin,et al.  On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces , 2011 .

[24]  D Henderson,et al.  Temperature dependence of the double layer capacitance for the restricted primitive model of an electrolyte solution from a density functional approach. , 2005, The Journal of chemical physics.

[25]  M. Fedorov,et al.  Screening of Ion–Graphene Electrode Interactions by Ionic Liquids: The Effects of Liquid Structure , 2014 .

[26]  Y. Gogotsi,et al.  Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes , 2013 .

[27]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[28]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[29]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[30]  T. Kirchner,et al.  Electrical double layer in ionic liquids : structural transitions from multilayer to monolayer structure at the interface , 2013 .

[31]  M. Fedorov,et al.  Probing the neutral graphene-ionic liquid interface: insights from molecular dynamics simulations. , 2012, Physical chemistry chemical physics : PCCP.

[32]  A. Pak,et al.  A Computational Study of the Interfacial Structure and Capacitance of Graphene in [BMIM][PF6] Ionic Liquid , 2013 .

[33]  Suojiang Zhang,et al.  Structures and Interactions of Ionic Liquids , 2014 .

[34]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[35]  S. Pei,et al.  Sum frequency generation study on the orientation of room-temperature ionic liquid at the graphene–ionic liquid interface , 2011 .

[36]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[37]  P. Madden,et al.  Potential-induced ordering transition of the adsorbed layer at the ionic liquid/electrified metal interface. , 2010, The journal of physical chemistry. B.

[38]  S. H. Kim,et al.  Effects of microporosity on the specific capacitance of polyacrylonitrile-based activated carbon fiber , 2006 .

[39]  A. Kisza,et al.  The capacitance of the diffuse layer of electric double layer of electrodes in molten salts , 2006 .

[40]  A. Kornyshev,et al.  Three-Dimensional Double Layers , 2014 .

[41]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[42]  A. Kornyshev,et al.  Double layer in ionic liquids: the nature of the camel shape of capacitance , 2010 .

[43]  Carlos M. Pereira,et al.  The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface – Effect of temperature on the differential capacitance , 2008 .

[44]  Douglas Henderson,et al.  On the influence of ionic association on the capacitance of an electrical double layer , 2001 .

[45]  B. Roling,et al.  Influence of Electrode Roughness on Double Layer Formation in Ionic Liquids , 2015 .

[46]  Shiren Wang,et al.  Enhancing thermoelectric properties of organic composites through hierarchical nanostructures , 2013, Scientific Reports.

[47]  A. Kornyshev,et al.  Double layer in ionic liquids: overscreening versus crowding. , 2010, Physical review letters.

[48]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[49]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[50]  Renata Costa,et al.  Double layer in room temperature ionic liquids: influence of temperature and ionic size on the differential capacitance and electrocapillary curves. , 2010, Physical chemistry chemical physics : PCCP.

[51]  Xinhe Bao,et al.  Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. , 2011, Chemical communications.

[52]  A. Pak,et al.  Erratum: A Computational Study of the Interfacial Structure and Capacitance of Graphene in [BMIM][PF6] Ionic Liquid [J. Electrochem. Soc., 160, A1 (2013)] , 2014 .

[53]  R. Kant,et al.  Theory of anomalous dynamics of electric double layer at heterogeneous and rough electrodes , 2014 .

[54]  Chen-Zhong Li,et al.  Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications , 2009 .

[55]  Renata Costa,et al.  Electric double layer studies at the interface of mercury–binary ionic liquid mixtures with a common anion , 2013 .

[56]  John Ralston,et al.  Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature , 2008 .

[57]  M. Ghatee,et al.  Physisorption of Hydrophobic and Hydrophilic 1-Alkyl-3-methylimidazolium Ionic Liquids on the Graphenes , 2011 .

[58]  Robert H. Hurt,et al.  All in the graphene family - A recommended nomenclature for two-dimensional carbon materials , 2013 .

[59]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[60]  R. Ruoff,et al.  High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. , 2011, ACS nano.