A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems

Background. Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo for quantifying the effects of such uncertainties on the system response. Many uncertain parameters cannot be measured accurately, especially in real time applications. Information about them is obtained via parameter estimation techniques. Parameter estimation for large systems is a difficult problem, and the solution approaches are computationally expensive. Method of Approach. This paper proposes a new computational approach for parameter estimation based on the Extended Kalman Filter (EKF) and the polynomial chaos theory for parameter estimation. The error covariances needed by EKF are computed from polynomial chaos expansions, and the EKF is used to update the polynomial chaos representation of the uncertain states and the uncertain parameters. The proposed method is applied to a nonlinear four degree of freedom roll plane model of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar. Results. The main advantages of this method are an accurate representation of uncertainties via polynomial chaoses, a computationally efficient update formula based on EKF, and the ability to provide aposteriori probability densities of the estimated parameters. The method is able to deal with non-Gaussian parametric uncertainties. The paper identifies and theoretically explains a possible weakness of the EKF with approximate covariances: numerical errors due to the truncation in the polynomial chaos expansions can accumulate quickly when measurements are taken at a fast sampling rate. To prevent filter divergence we propose to lower the sampling rate, and to take a smoother approach where a set of time-distributed observations are all processed at once. Conclusions. We propose a parameter estimation approach that uses polynomial chaoses to propagate uncertainties and estimate error covariances in the EKF framework. Parameter estimates are obtained in the form of a polynomial chaos expansion which carries information about the aposteriori probability density function. The method is illustrated on a roll plane vehicle model.

[1]  Gerhard-Wilhelm Weber,et al.  Parameter Estimation in Stochastic Differential Equations , 2012 .

[2]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[3]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[4]  J. L. Maryak,et al.  Bayesian Heuristic Approach to Discrete and Global Optimization , 1999, Technometrics.

[5]  Jonas Mockus Bayesian Heuristic Approach to Discrete and Global Optimization: Algorithms, Visualization, Software, and Applications , 1996 .

[6]  H.K. Fathy,et al.  Online vehicle mass estimation using recursive least squares and supervisory data extraction , 2008, 2008 American Control Conference.

[7]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[8]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[9]  Adrian Sandu,et al.  Parameter estimation method using an extended Kalman Filter , 2007 .

[10]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[11]  Byoung-Tak Zhang A Bayesian framework for evolutionary computation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  Adrian Sandu,et al.  Modeling Multibody Dynamic Systems With Uncertainties . Part II : Numerical Applications , 2004 .

[13]  Geir Evensen,et al.  Open Boundary Conditions for the Extended Kalman Filter With a Quasi-Geostrophic Ocean Model , 1993 .

[14]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[15]  David E. Simon,et al.  An Investigation of the Effectiveness of Skyhook Suspensions for Controlling Roll Dynamics of Sport Utility Vehicles Using Magneto-Rheological Dampers by , 2001 .

[16]  Adrian Sandu,et al.  A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems – Part I: Theoretical Approach , 2007 .

[17]  Adrian Sandu,et al.  Treating Uncertainties in Multibody Dynamic Systems Using a Polynomial Chaos Spectral Decomposition , 2004 .

[18]  Adrian Sandu,et al.  Modeling Multibody Dynamic Systems With Uncertainties . Part I : Theoretical and Computational Aspects , 2004 .

[19]  J. Ford,et al.  Hybrid estimation of distribution algorithm for global optimization , 2004 .

[20]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[21]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[22]  Roger Ghanem,et al.  Robust System Identification of Strongly Non-linear Dynamics Using a Polynomial Chaos-Based Sequential Data Assimilation Technique , 2007 .

[23]  Adrian Sandu,et al.  Uncertainty quantification and apportionment in air quality models using the polynomial chaos method , 2009, Environ. Model. Softw..

[24]  Horst Reiner,et al.  Introduction to Global Optimization. Second Edition , 2000 .

[25]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[26]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[27]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[28]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[29]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[30]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[31]  Adrian Sandu,et al.  Parameter Estimation for Mechanical Systems Using an Extended Kalman Filter , 2008 .

[32]  M. Fisher,et al.  Assimilation Techniques (5): Approximate Kalman Filters and Singular Vectors April 2001 , 2002 .

[33]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[34]  Ombretta Paladino,et al.  Optimal sampling for the estimation of dispersion parameters in soil columns using an Iterative Genetic Algorithm , 2009, Environ. Model. Softw..

[35]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .

[36]  Jaya P. N. Bishwal,et al.  Parameter estimation in stochastic differential equations , 2007 .

[37]  Adrian Sandu,et al.  Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects , 2006 .

[38]  José Herskovits,et al.  Estimation of piezoelastic and viscoelastic properties in laminated structures , 2009 .

[39]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[40]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[41]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[42]  Igor G. Vladimirov,et al.  Bayesian parameter estimation and prediction in mean reverting stochastic diffusion models , 2005 .

[43]  Stephen E. Cohn,et al.  An Introduction to Estimation Theory (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[44]  Qingfu Zhang,et al.  An evolutionary algorithm with guided mutation for the maximum clique problem , 2005, IEEE Transactions on Evolutionary Computation.

[45]  Adrian Sandu,et al.  Efficient uncertainty quantification with the polynomial chaos method for stiff systems , 2009, Math. Comput. Simul..

[46]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[47]  Antonello Monti,et al.  Indirect Measurements Via Polynomial Chaos Observer , 2007, Proceedings of the 2006 IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement (AMUEM 2006).

[48]  Christian Soize,et al.  Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests , 2007 .

[49]  Adrian Sandu,et al.  Modeling multibody systems with uncertainties. Part II: Numerical applications , 2006 .

[50]  Jin-Wei Liang Damping estimation via energy-dissipation method , 2007 .

[51]  Adrian Sandu,et al.  A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems - Part II: Applications to Vehicle Systems , 2007 .

[52]  Helmut J. Pradlwarter,et al.  Realistic and efficient reliability estimation for aerospace structures , 2005 .

[53]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .

[54]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[55]  N. Wiener The Homogeneous Chaos , 1938 .

[56]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[57]  Adrian Sandu,et al.  Stochastic Modeling of Terrain Profiles and Soil Parameters , 2005 .

[58]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[59]  Adrian Sandu,et al.  Modeling and Simulation of a Full Vehicle With Parametric and External Uncertainties , 2005 .

[60]  Adrian Sandu,et al.  Treatment of Constrained Multibody Dynamic Systems with Uncertainties , 2005 .

[61]  James O. Ramsay,et al.  Selecting optimal weighting factors in iPDA for parameter estimation in continuous-time dynamic models , 2008, Comput. Chem. Eng..

[62]  Karline Soetaert,et al.  Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea , 2007 .

[63]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[64]  G. Evensen Using the Extended Kalman Filter with a Multilayer Quasi-Geostrophic Ocean Model , 1992 .

[65]  Tariq Khan,et al.  A Recursive Bayesian Estimation Method for Solving Electromagnetic Nondestructive Evaluation Inverse Problems , 2008, IEEE Transactions on Magnetics.

[66]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[67]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[68]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[69]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[70]  Chein-Shan Liu,et al.  Identifying time-dependent damping and stiffness functions by a simple and yet accurate method , 2008 .

[71]  James T. Allison,et al.  Efficient parameterization of large-scale dynamic models through the use of activity analysis , 2006 .

[72]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[73]  Nicholas D. Oliveto,et al.  Dynamic identification of structural systems with viscous and friction damping , 2008 .