Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques

The use of a thin layer of zinc oxide nanoparticles as an electron-transport layer allows flexible perovskite solar cells to be fabricated with a power conversion efficiency as high as 15.7%.

[1]  Robert P. H. Chang,et al.  Polymer solar cells with enhanced fill factors , 2013, Nature Photonics.

[2]  Kai Zhu,et al.  Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells , 2013 .

[3]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[4]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[5]  S. Yoo,et al.  Inverted Type Polymer Solar Cells with Self-Assembled Monolayer Treated ZnO , 2013 .

[6]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[7]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[8]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[9]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[10]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[11]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[12]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[13]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[14]  N. Park,et al.  Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , 2012, Nanoscale Research Letters.

[15]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[16]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[17]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[18]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[19]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[20]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[21]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[22]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[23]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[24]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[25]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[26]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[27]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[28]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[29]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[30]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[31]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[32]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[33]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[34]  Andreas Kornowski,et al.  Self-assembly of ZnO: from nanodots to nanorods. , 2002, Angewandte Chemie.

[35]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[36]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[37]  Michael D. McGehee,et al.  Materials science: Fast-track solar cells , 2013, Nature.

[38]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .