Region growing on a hypercube multiprocessor

The region growing paradigm for image segmentation groups neighboring pixels into regions depending upon a predetermined homogeneity criteria. A parallel method for region growing on an MIMD multiprocessor system is presented. Since the region growing problem exhibits non-uniform and unpredictable load fluctuations, it requires a dynamic load balancing scheme to achieve a balanced load distribution. The results of implementing a parallel region growing algorithm on the Intel-iPSC hypercube are discussed.

[1]  Robert M. Keller,et al.  Gradient Model: A Demand-Driven Load Balancing Scheme , 1986, ICDCS.

[2]  Peter C. Patton,et al.  Hypercube architectures , 1986 .

[3]  Ralph Grishman,et al.  The NYU Ultracomputer—Designing an MIMD Shared Memory Parallel Computer , 1983, IEEE Transactions on Computers.

[4]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[5]  Josef Kittler,et al.  Image processing system architectures , 1985 .

[6]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[7]  Jake K. Aggarwal,et al.  A Mapping Strategy for Parallel Processing , 1987, IEEE Transactions on Computers.

[8]  Anthony P. Reeves,et al.  Parallel computer architectures for image processing , 1984, Comput. Vis. Graph. Image Process..

[9]  Yung-Terng Wang,et al.  Load Sharing in Distributed Systems , 1985, IEEE Transactions on Computers.

[10]  A. Gottleib,et al.  The nyu ultracomputer- designing a mimd shared memory parallel computer , 1983 .

[11]  D. D. Gajski,et al.  Toward computer-aided programming for multiprocessors , 1986 .

[12]  Alan H. Karp,et al.  Programming for Parallelism , 1987, Computer.

[13]  Roger W. Hockney MIMD computing in the USA - 1984 , 1985, Parallel Comput..