Variational shape approximation

A method for concise, faithful approximation of complex 3D datasets is key to reducing the computational cost of graphics applications. Despite numerous applications ranging from geometry compression to reverse engineering, efficiently capturing the geometry of a surface remains a tedious task. In this paper, we present both theoretical and practical contributions that result in a novel and versatile framework for geometric approximation of surfaces. We depart from the usual strategy by casting shape approximation as a variational geometric partitioning problem. Using the concept of geometric proxies, we drive the distortion error down through repeated clustering of faces into best-fitting regions. Our approach is entirely discrete and error-driven, and does not require parameterization or local estimations of differential quantities. We also introduce a new metric based on normal deviation, and demonstrate its superior behavior at capturing anisotropy.

[1]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[2]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[3]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[4]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[5]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .

[6]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[7]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[8]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[9]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[10]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[11]  Victoria Interrante,et al.  Illustrating transparent surfaces with curvature-directed strokes , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[12]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[13]  Russell H. Taylor,et al.  Superfaces: polygonal mesh simplification with bounded error , 1996, IEEE Computer Graphics and Applications.

[14]  Ralph R. Martin,et al.  Reverse engineering of geometric models - an introduction , 1997, Comput. Aided Des..

[15]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[16]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[17]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[18]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[19]  Jarek Rossignac,et al.  Optimal bit allocation in compressed 3D models , 1999, Comput. Geom..

[20]  Michael Garland,et al.  Optimal triangulation and quadric-based surface simplification , 1999, Comput. Geom..

[21]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[22]  Bernd Hamann,et al.  Surface Reconstruction Using Adaptive Clustering Methods , 1999, Geometric Modelling.

[23]  M. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[24]  Keisuke Inoue,et al.  Clustering Large Number of Faces for 2-Dimensional Mesh Generation , 1999, IMR.

[25]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[26]  Victoria Interrante,et al.  Line direction matters: an argument for the use of principal directions in 3D line drawings , 2000, NPAR '00.

[27]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[28]  Eduardo F. D'Azevedo,et al.  Are Bilinear Quadrilaterals Better Than Linear Triangles? , 2000, SIAM J. Sci. Comput..

[29]  Greg Turk,et al.  Image-driven simplification , 2000, TOGS.

[30]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[31]  Christian Rössl,et al.  Line-art rendering of 3D-models , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[32]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[33]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[34]  Alla Sheffer,et al.  Model simplification for meshing using face clustering , 2001, Comput. Aided Des..

[35]  Eitan Grinspun,et al.  Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..

[36]  Leif Kobbelt,et al.  Resampling Feature and Blend Regions in Polygonal Meshes for Surface Anti‐Aliasing , 2001, Comput. Graph. Forum.

[37]  I. Daubechies,et al.  Tree Approximation and Optimal Encoding , 2001 .

[38]  Alejo Hausner,et al.  Simulating decorative mosaics , 2001, SIGGRAPH.

[39]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[40]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[41]  Martin Vetterli,et al.  Mesh Optimization Using Global Error with Application to Geometry Simplification , 2002, Graph. Model..

[42]  Philippe P. Pébay,et al.  Planar Quadrangle Quality Measures: Is There Really A Choice? , 2002, IMR.

[43]  Ayellet Tal,et al.  Metamorphosis of Polyhedral Surfaces using Decomposition , 2002, Comput. Graph. Forum.

[44]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[45]  David M. Mount,et al.  A local search approximation algorithm for k-means clustering , 2002, SCG '02.

[46]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[47]  Steve Oudot,et al.  Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.

[48]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[49]  Y. Ohtake,et al.  Dynamic mesh optimization for polygonized implicit surfaces with sharp features , 2003, The Visual Computer.

[50]  Frédo Durand,et al.  Billboard clouds for extreme model simplification , 2003, ACM Trans. Graph..

[51]  Michael Garland,et al.  User-guided simplification , 2003, I3D '03.

[52]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[53]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[54]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[55]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[56]  Dieter Schmalstieg,et al.  User-controlled creation of multiresolution meshes , 2003, I3D '03.

[57]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[58]  Mathieu Desbrun,et al.  Removing excess topology from isosurfaces , 2004, TOGS.

[59]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[60]  A. Gray,et al.  Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition (Studies in Advanced Mathematics) , 2006 .