The tidal displacement field at Earth's surface determined using global GPS observations

We investigate the 3‐D tidal displacement field on Earth's surface recorded globally by 456 continuous global positioning system (GPS) stations of IGS spanning 1996–2011, for eight principal diurnal and semidiurnal tidal constituents. In‐phase and quadrature amplitudes of the residual tidal displacements, after removal of an a priori body tide model, are estimated using the precise point positioning (PPP) technique on the daily GPS data; the resultant daily estimates are combined to derive final estimates for each tide at each station. The results are compared with the predictions of eight recent global ocean tide models, separately for coastal (307) and inland (149) stations. We show that GPS can provide tidal displacement estimates accurate to the level of 0.12 mm (horizontal) and 0.24 mm (vertical) for the lunar‐only constituents (M2, N2, O1, and Q1) and less favorably for solar‐related tidal constituents (S2, K2, K1, and P1), although improved by ambiguity resolution. Most recent ocean tide models fit the GPS estimates equally well on the global scale but do not agree well between them in certain coastal areas, especially for the vertical displacements, suggesting the existence of model uncertainties near shallow seas. The tidal residuals for the inland stations after removing both body tides and ocean tidal loading (OTL) furthermore show clear continental‐scale spatial coherence, implying deficiencies of the a priori body tide modeling in catching lateral heterogeneity in elastic as well as inelastic properties in the Earth's deep interior. We assert that the GPS tidal displacement estimates now achieve sufficient accuracy to potentially provide constraints on the Earth's structure.

[1]  D. Stammer,et al.  Inferring deep ocean tidal energy dissipation from the global high‐resolution data‐assimilative HAMTIDE model , 2014 .

[2]  Benjamin F. Chao,et al.  Analysis of tidal signals in surface displacement measured by a dense continuous GPS array , 2012 .

[3]  Ole Baltazar Andersen,et al.  Multimission empirical ocean tide modeling for shallow waters and polar seas , 2011 .

[4]  Cheinway Hwang,et al.  Vertical Displacement due to Ocean Tidal Loading Around Taiwan Based on GPS Observations , 2011 .

[5]  Takeo Ito,et al.  Probing Asthenospheric Density, Temperature, and Elastic Moduli Below the Western United States , 2011, Science.

[6]  Jan P. Weiss,et al.  Single receiver phase ambiguity resolution with GPS data , 2010 .

[7]  Kenny C. S Kwok,et al.  Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines , 2010 .

[8]  Takeo Ito,et al.  High resolution mapping of Earth tide response based on GPS data in Japan , 2009 .

[9]  Matt A. King,et al.  Apparent stability of GPS monumentation from short‐baseline time series , 2009 .

[10]  Paul Tregoning,et al.  Atmospheric effects and spurious signals in GPS analyses , 2009 .

[11]  M. Zhong,et al.  Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes , 2009 .

[12]  Xiaoli Ding,et al.  Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network , 2009 .

[13]  J. Mitrovica,et al.  Body tides on a 3-D elastic earth: Toward a tidal tomography , 2009 .

[14]  L. Metivier,et al.  Body tides of a convecting, laterally heterogeneous, and aspherical Earth , 2008 .

[15]  Marie-Noëlle Bouin,et al.  GPS estimates of ocean tide loading in NW-France: Determination of ocean tide loading constituents and comparison with a recent ocean tide model , 2008 .

[16]  Hans-Georg Scherneck,et al.  Assessing the accuracy of predicted ocean tide loading displacement values , 2008 .

[17]  Peter J. Clarke,et al.  Subdaily signals in GPS observations and their effect at semiannual and annual periods , 2008 .

[18]  W. Bosch,et al.  EOT11A - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry , 2008 .

[19]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[20]  G. Masters,et al.  Spherically symmetric attenuation within the Earth from normal mode data , 2007 .

[21]  Peter J. Clarke,et al.  A comparison of GPS, VLBI and model estimates of ocean tide loading displacements , 2006 .

[22]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[23]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[24]  S. Okubo A CORRECTION TO "PARTIAL DERIVATIVE 0 F LOVE NUMBERS" , 2006 .

[25]  Matt A. King Kinematic and static GPS techniques for estimating tidal displacements with application to Antarctica , 2006 .

[26]  Peter Steigenberger,et al.  Impact of higher‐order ionospheric terms on GPS estimates , 2005 .

[27]  Peter J. Clarke,et al.  Validation of ocean tide models around Antarctica using onshore GPS and gravity data , 2005 .

[28]  T. Baker,et al.  An estimate of the errors in gravity ocean tide loading computations , 2005 .

[29]  Yuebing Li,et al.  Green's function of the deformation of the Earth as a result of atmospheric loading , 2004 .

[30]  Peter J. Clarke,et al.  Stability of direct GPS estimates of ocean tide loading , 2004 .

[31]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[32]  Michael B. Heflin,et al.  The effect of the second order GPS ionospheric correction on receiver positions , 2003 .

[33]  J. Boy,et al.  A comparison of tidal ocean loading models using superconducting gravimeter data , 2003 .

[34]  Leonid Petrov,et al.  Study of harmonic site position variations determined by very long baseline interferometry , 2003 .

[35]  T. Baker,et al.  Validating Earth and ocean tide models using tidal gravity measurements , 2003 .

[36]  G. Blewitt Self‐consistency in reference frames, geocenter definition, and surface loading of the solid Earth , 2003 .

[37]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[38]  Shfaqat Abbas Khan,et al.  Determination of semi‐diurnal ocean tide loading constituents using GPS in Alaska , 2001 .

[39]  W. Dillinger,et al.  Vertical Ocean-loading Deformations Derived from a Global GPS Network. , 2001 .

[40]  P. M. Mathews Love Numbers and Gravimetric Factor for Diurnal Tides. , 2001 .

[41]  M. Ooe,et al.  Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan , 2000 .

[42]  M. Foreman MANUAL FOR TIDAL HEIGHTS ANALYSIS AND PREDICTION , 2000 .

[43]  J. Wahr,et al.  Tides for a convective Earth , 1999 .

[44]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[45]  Robert W. King,et al.  Estimating regional deformation from a combination of space and terrestrial geodetic data , 1998 .

[46]  V. Dehant,et al.  New transfer functions for nutations of a nonrigid Earth , 1997 .

[47]  P. M. Mathews,et al.  Tidal station displacements , 1997 .

[48]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[49]  Duncan Carr Agnew,et al.  NLOADF: A program for computing ocean‐tide loading , 1997 .

[50]  Irwin I. Shapiro,et al.  Love numbers for a rotating spheroidal Earth∷ New definitions and numerical values , 1995 .

[51]  Olivier Francis,et al.  Global charts of ocean tide loading effects , 1990 .

[52]  G. Blewitt Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km , 1989 .

[53]  S. Okubo,et al.  Erratum to: “Partial derivative of love numbers” , 1984 .

[54]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[55]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[56]  J. Wahr,et al.  A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .

[57]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[58]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[59]  Z. Alterman,et al.  Propagation of Rayleigh Waves in the Earth , 1937 .