Concentration Inequalities for Sub-Additive Functions Using the Entropy Method
暂无分享,去创建一个
[1] Harald Cramer,et al. Problems in Probability Theory , 1947 .
[2] G. Bennett. Probability Inequalities for the Sum of Independent Random Variables , 1962 .
[3] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[4] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[5] M. Talagrand. Majorizing measures: the generic chaining , 1996 .
[6] S. Bobkov. SOME EXTREMAL PROPERTIES OF THE BERNOULLI DISTRIBUTION , 1997 .
[7] M. Talagrand. A new look at independence , 1996 .
[8] M. Ledoux. On Talagrand's deviation inequalities for product measures , 1997 .
[9] Y. Baraud. Model selection for regression on a fixed design , 2000 .
[10] R. Latala,et al. Between Sobolev and Poincaré , 2000, math/0003043.
[11] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[12] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[13] M. Ledoux. The concentration of measure phenomenon , 2001 .
[14] E. Rio,et al. Inégalités de concentration pour les processus empiriques de classes de parties , 2001 .
[15] Djalil CHAFAÏ. Entropies, convexity, and functional inequalities , 2002 .
[16] E. Rio. Une inégalité de Bennett pour les maxima de processus empiriques , 2002 .
[17] S. Boucheron,et al. Concentration inequalities using the entropy method , 2003 .
[18] S. Boucheron,et al. Moment inequalities for functions of independent random variables , 2005, math/0503651.