Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand’s inequality for empirical processes and new bounds for randomized processes associated to unbounded random variables. These results are obtained by further developing the entropy method introduced by Ledoux.

[1]  Harald Cramer,et al.  Problems in Probability Theory , 1947 .

[2]  G. Bennett Probability Inequalities for the Sum of Independent Random Variables , 1962 .

[3]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[4]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[5]  M. Talagrand Majorizing measures: the generic chaining , 1996 .

[6]  S. Bobkov SOME EXTREMAL PROPERTIES OF THE BERNOULLI DISTRIBUTION , 1997 .

[7]  M. Talagrand A new look at independence , 1996 .

[8]  M. Ledoux On Talagrand's deviation inequalities for product measures , 1997 .

[9]  Y. Baraud Model selection for regression on a fixed design , 2000 .

[10]  R. Latala,et al.  Between Sobolev and Poincaré , 2000, math/0003043.

[11]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[12]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[13]  M. Ledoux The concentration of measure phenomenon , 2001 .

[14]  E. Rio,et al.  Inégalités de concentration pour les processus empiriques de classes de parties , 2001 .

[15]  Djalil CHAFAÏ Entropies, convexity, and functional inequalities , 2002 .

[16]  E. Rio Une inégalité de Bennett pour les maxima de processus empiriques , 2002 .

[17]  S. Boucheron,et al.  Concentration inequalities using the entropy method , 2003 .

[18]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.