Parameter Estimation of the Nonlinear Muskingum Model Using Parameter-Setting-Free Harmony Search

Although phenomenon-mimicking algorithms, such as genetic algorithms, particle swarm optimization, and harmony search, have overcome the disadvantages of mathematical algorithms, such as the nonlinear least-squares method, segmented least-squares method, Lagrange multiplier method, a hybrid of pattern search and local search, and the Broyden-Fletcher-Goldfarb-Shanno technique, the algorithms have an inherent shortcoming. They require a tedious and skillful parameter-setting process for the algorithm parameters, such as the crossover rate, mutation rate, acceleration coefficients, harmony memory considering rate, and pitch-adjusting rate. Thus, this study proposes a novel parameter-setting-free technique interfaced with a harmony search algorithm and applies it to the parameter estimation of the nonlinear Muskingum model, which is an optimization problem with continuous decision variables. Results show that the proposed technique found good model parameter values while outperforming a classical harmony sea...

[1]  Zong Woo Geem,et al.  Multiobjective Optimization of Time-Cost Trade-Off Using Harmony Search , 2010 .

[2]  Jiancang Xie,et al.  Parameter Estimation for Nonlinear Muskingum Model Based on Immune Clonal Selection Algorithm , 2010 .

[3]  Holger R. Maier,et al.  Comparison of genetic algorithm parameter setting methods for chlorine injection optimization. , 2010 .

[4]  Zong Woo Geem,et al.  Various continuous harmony search algorithms for web-based hydrologic parameter optimisation , 2010, Int. J. Math. Model. Numer. Optimisation.

[5]  Liang-Cheng Chang,et al.  Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model , 2009 .

[6]  M. Tamer Ayvaz,et al.  Application of Harmony Search algorithm to the solution of groundwater management models , 2009 .

[7]  Z. Geem Particle-swarm harmony search for water network design , 2009 .

[8]  Zong Woo Geem,et al.  Novel derivative of harmony search algorithm for discrete design variables , 2008, Appl. Math. Comput..

[9]  Y. M. Cheng,et al.  An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis , 2008 .

[10]  Mehmet Polat Saka,et al.  Optimum Geometry Design of Geodesic Domes Using Harmony Search Algorithm , 2007 .

[11]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[12]  Z. Geem Parameter Estimation for the Nonlinear Muskingum Model Using the BFGS Technique , 2006 .

[13]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[14]  Amlan Das,et al.  Parameter Estimation for Muskingum Models , 2004 .

[15]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[16]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[17]  S. Mohan,et al.  Parameter Estimation of Nonlinear Muskingum Models Using Genetic Algorithm , 1997 .

[18]  Jaewan Yoon,et al.  Parameter Estimation of Linear and Nonlinear Muskingum Models , 1993 .

[19]  Y. Tung River flood routing by nonlinear muskingum method , 1985 .

[20]  M. A. Gill Flood routing by the Muskingum method , 1978 .