Rhapsody-G simulations – II. Baryonic growth and metal enrichment in massive galaxy clusters

We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (M_(vir) ≈ 6 × 10^(14) M_⊙ h^(−1)) simulated galaxy clusters from the Rhapsody-G suite in detail and compare them to observational results. The simulations were performed with the AMR code ramses and include the effect of active galactic nucleus (AGN) feedback at the subgrid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low- and high-resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of 2 lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple ‘regulator’ model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however, this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

[1]  A. Vikhlinin,et al.  Stellar Mass—Halo Mass Relation and Star Formation Efficiency in High-Mass Halos , 2014, Astronomy Letters.

[2]  R. Bower,et al.  Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass–metallicity relation , 2015, 1507.08281.

[3]  Frazer R. Pearce,et al.  nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models , 2015, 1503.06065.

[4]  S. Borgani,et al.  COOL CORE CLUSTERS FROM COSMOLOGICAL SIMULATIONS , 2015, 1509.04247.

[5]  R. Teyssier,et al.  rhapsody-g simulations - I. The cool cores, hot gas and stellar content of massive galaxy clusters , 2015, 1509.04289.

[6]  Caltech,et al.  The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.

[7]  M. Hilton,et al.  Coevolution of brightest cluster galaxies and intracluster light using CLASH , 2015, 1503.04321.

[8]  S. More,et al.  THE SPLASHBACK RADIUS AS A PHYSICAL HALO BOUNDARY AND THE GROWTH OF HALO MASS , 2015, 1504.05591.

[9]  Durham,et al.  Colours and luminosities of z = 0.1 galaxies in the eagle simulation , 2015, 1504.04374.

[10]  S. Molendi,et al.  The evolution of the spatially-resolved metal abundance in galaxy clusters up to z=1.4 , 2015, 1504.02107.

[11]  R. Teyssier,et al.  Rhapsody-G simulations: galaxy clusters as baryonic closed boxes and the covariance between hot gas and galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[12]  Cosmology,et al.  The accretion histories of brightest cluster galaxies from their stellar population gradients , 2015, 1503.01465.

[13]  R. Hanuschik,et al.  The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light , 2015, 1502.02032.

[14]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[15]  R. Feldmann The equilibrium view on dust and metals in galaxies: Galactic outflows drive low dust-to-metal ratios in dwarf galaxies , 2014, 1412.2755.

[16]  Lars Hernquist,et al.  The impact of feedback on cosmological gas accretion , 2014, 1410.5425.

[17]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[18]  D. Nagai,et al.  THE PHYSICAL NATURE OF THE COSMIC ACCRETION OF BARYONS AND DARK MATTER INTO HALOS AND THEIR GALAXIES , 2014, 1412.0662.

[19]  R. Teyssier,et al.  PHEW: a parallel segmentation algorithm for three-dimensional AMR datasets , 2014, 1412.0510.

[20]  D. Nagai,et al.  MASS ACCRETION AND ITS EFFECTS ON THE SELF-SIMILARITY OF GAS PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS , 2014, 1411.5361.

[21]  Zhongxiang Wang,et al.  FERMI OBSERVATION OF THE TRANSITIONAL PULSAR BINARY XSS J12270–4859 , 2014, 1411.3449.

[22]  S. Andreon,et al.  Chemical evolution on the scale of clusters of galaxies: a conundrum? , 2014, 1409.0307.

[23]  B. O’Shea,et al.  SCALING RELATIONS FOR GALAXIES PRIOR TO REIONIZATION , 2014, 1408.2523.

[24]  V. Springel,et al.  Introducing the Illustris Project: the evolution of galaxy populations across cosmic time , 2014, 1405.3749.

[25]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[26]  R. Teyssier,et al.  Brightest cluster galaxies in cosmological simulations with adaptive mesh refinement: successes and failures , 2014, 1405.0528.

[27]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[28]  Heidelberg,et al.  Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints , 2014, 1402.6212.

[29]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): testing galaxy formation models through the most massive galaxies in the Universe , 2014, 1402.4139.

[30]  J. Cardoso,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[31]  J. Schaye,et al.  Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.

[32]  S. Borgani,et al.  On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium , 2013, 1311.0818.

[33]  R. Teyssier,et al.  The biasing of baryons on the cluster mass function and cosmological parameter estimation , 2013, Monthly Notices of the Royal Astronomical Society.

[34]  S. Sivanandam,et al.  GALAXY CLUSTER BARYON FRACTIONS REVISITED , 2013, 1309.3565.

[35]  S. Borgani,et al.  Brightest cluster galaxies in cosmological simulations: achievements and limitations of active galactic nuclei feedback models , 2013, 1308.3246.

[36]  C. Collins,et al.  Growth of brightest cluster galaxies via mergers since z = 1 , 2013, 1307.1702.

[37]  Yen-Ting Lin,et al.  THE STELLAR MASS GROWTH OF BRIGHTEST CLUSTER GALAXIES IN THE IRAC SHALLOW CLUSTER SURVEY , 2013, 1305.5254.

[38]  P. Rosati,et al.  The Importance of Major Mergers in the Build Up of Stellar Mass in Brightest Cluster Galaxies at z = 1 , 2013, 1305.0882.

[39]  C. Frenk,et al.  Enriching the hot circumgalactic medium , 2013, 1304.4730.

[40]  C. Carollo,et al.  GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY–MASS–STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS , 2013, 1303.5059.

[41]  S. White,et al.  The growth in size and mass of cluster galaxies since z = 2 , 2013, 1301.5319.

[42]  Kosuke Sato,et al.  METAL-MASS-TO-LIGHT RATIOS OF THE PERSEUS CLUSTER OUT TO THE VIRIAL RADIUS , 2013, 1301.0655.

[43]  B. O’Shea,et al.  ON THE ROAD TO MORE REALISTIC GALAXY CLUSTER SIMULATIONS: THE EFFECTS OF RADIATIVE COOLING AND THERMAL FEEDBACK PRESCRIPTIONS ON THE OBSERVATIONAL PROPERTIES OF SIMULATED GALAXY CLUSTERS , 2012, 1211.3117.

[44]  R. Wechsler,et al.  RHAPSODY. II. SUBHALO PROPERTIES AND THE IMPACT OF TIDAL STRIPPING FROM A STATISTICAL SAMPLE OF CLUSTER-SIZE HALOS , 2012, 1210.6358.

[45]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[46]  P. Thomas,et al.  Heating and enriching the intracluster medium , 2012, 1201.1104.

[47]  R. Wechsler,et al.  RHAPSODY. I. STRUCTURAL PROPERTIES AND FORMATION HISTORY FROM A STATISTICAL SAMPLE OF RE-SIMULATED CLUSTER-SIZE HALOS , 2012, 1209.3309.

[48]  C. Maraston,et al.  THE EVOLUTION OF BRIGHTEST CLUSTER GALAXIES IN A HIERARCHICAL UNIVERSE , 2012, 1209.1204.

[49]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[50]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[51]  Technology,et al.  Star formation activities in early-type brightest cluster galaxies , 2012, 1203.1840.

[52]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[53]  S. Borgani,et al.  Pointing to the minimum scatter: the generalized scaling relations for galaxy clusters , 2011, 1111.1693.

[54]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[55]  R. Teyssier,et al.  How AGN feedback and metal cooling shape cluster entropy profiles , 2011, 1104.0171.

[56]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[57]  J. Schaye,et al.  The effect of variations in the input physics on the cosmic distribution of metals predicted by simulations , 2011, 1101.3550.

[58]  J. Schaye,et al.  The rates and modes of gas accretion on to galaxies and their gaseous haloes , 2010, 1011.2491.

[59]  M. Norman,et al.  HYDRODYNAMICAL SIMULATIONS OF GALAXY CLUSTERS WITH GALCONS , 2010, 1004.3839.

[60]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[61]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[62]  S. Kimeswenger,et al.  Metal enrichment of the intra-cluster medium by thermally and cosmic-ray driven galactic winds An analytical prescription for galactic outflows , 2009, 0907.3800.

[63]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[64]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[65]  V. Springel,et al.  THE ROLE OF DRY MERGERS FOR THE FORMATION AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES , 2009, 0902.0373.

[66]  M. Bernardi,et al.  Evolution in the structural properties of early-type brightest cluster galaxies at small lookback time and dependence on the environment , 2009, 0901.1318.

[67]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[68]  V. Springel,et al.  Simulations of AGN Feedback in Galaxy Clusters and Groups: Impact on Gas Fractions and the LX-T Scaling Relation , 2008, 0909.3000.

[69]  S. Molendi,et al.  Radial metallicity profiles for a large sample of galaxy clusters observed with XMM-Newton , 2008, 0806.1445.

[70]  S. Sivanandam,et al.  Enrichment and pre-heating in intragroup gas from galactic outflows , 2008, 0805.1938.

[71]  Edinburgh,et al.  The evolution of the brightest cluster galaxies since z∼ 1 from the ESO Distant Cluster Survey (EDisCS) , 2008, 0804.2152.

[72]  P. Ocvirk,et al.  Bimodal gas accretion in the Horizon–MareNostrum galaxy formation simulation , 2008, 0803.4506.

[73]  K. Dolag,et al.  On the dynamical origin of the ICM metallicity evolution , 2008, 0802.0975.

[74]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[75]  Durham,et al.  Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters , 2007, 0710.0964.

[76]  R. Teyssier,et al.  On the onset of galactic winds in quiescent star forming galaxies , 2007, 0707.3376.

[77]  M. Postman,et al.  The Evolution of the Field and Cluster Morphology-Density Relation for Mass-Selected Samples of Galaxies , 2007, 0707.2787.

[78]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[79]  S. Borgani,et al.  Chemical enrichment of galaxy clusters from hydrodynamical simulations , 2007, 0705.1921.

[80]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[81]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[82]  J. Sommer-Larsen,et al.  Simulating galaxy clusters – I. Thermal and chemical properties of the intracluster medium , 2005, astro-ph/0509504.

[83]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[84]  Garching,et al.  Hydrodynamical simulations of cluster formation with central AGN heating , 2005, astro-ph/0509506.

[85]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[86]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[87]  Joachim Stadel,et al.  Simultaneous ram pressure and tidal stripping; how dwarf spheroidals lost their gas , 2005, astro-ph/0504277.

[88]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[89]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[90]  A. Loeb,et al.  Formation of the First Supermassive Black Holes , 2002, astro-ph/0212400.

[91]  R. Valdarnini Iron abundances and heating of the intracluster medium in hydrodynamical simulations of galaxy clusters , 2002, astro-ph/0210263.

[92]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[93]  R. Teyssier c ○ ESO 2002 Astronomy Astrophysics , 2002 .

[94]  S. Brough,et al.  Evolution of brightest cluster galaxies in X ray clusters , 2001, astro-ph/0111364.

[95]  L. Simard,et al.  Constraints on the Size Evolution of Brightest Cluster Galaxies , 2001, astro-ph/0110582.

[96]  Fabio Governato,et al.  The Metamorphosis of Tidally Stirred Dwarf Galaxies , 2001, astro-ph/0103430.

[97]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[98]  A. Gonzalez,et al.  Revisiting Brightest Cluster Galaxy Evolution with the Las Campanas Distant Cluster Survey , 2001, astro-ph/0110310.

[99]  Eve C. Ostriker,et al.  Dynamical Friction in a Gaseous Medium , 1998, astro-ph/9810324.

[100]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[101]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[102]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[103]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[104]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[105]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .